VPDES PERMIT PROGRAM FACT SHEET

This document gives pertinent information concerning the VPDES Permit listed below. This permit is being processed as a ${\tt MAJOR\ INDUSTRIAL}$ permit.

EXPIRATION DATE: November 15, 2015 PERMIT NO.: VA0004162 1. FACILITY LOCATION ADDRESS (IF DIFFERENT) FACILITY NAME AND LOCAL MAILING 2. ADDRESS International Paper - Franklin Mill same 34040 Union Camp Drive Franklin, VA 23851 CONTACT AT LOCATION ADDRESS CONTACT AT FACILITY: NAME: Raye Moore NAME: Kyle Duffy TITLE: TITLE: EHS Manager PHONE: (757) 635-9159 PHONE: (757) 569-4536 CONSULTANT CONTACT: OWNER CONTACT: (TO RECEIVE PERMIT) 3. NAME: NAME: Kyle Duffy FIRM NAME: TITLE: EHS Manager ADDRESS: COMPANY NAME: (IF DIFFERENT) ADDRESS: 34040 Union Camp Drive Franklin, VA 23851 PHONE: () **PHONE:** (757) 569-4536 EMAIL: EMAIL: Water Parmits, Regional Office 4. Date(s): 6-2015 Permit Writer(s): D.L. Thompson Date(s): 7/22/15 - 3/28/15 9/14/15 Reviewed By: Deanne Austin DO 5. PERMIT ACTION: () Owner Modification () Revoke & Reissue (X) Reissuance () Issuance () Board Modification () Change of Ownership/Name [Effective Date: SUMMARY OF SPECIFIC ATTACHMENTS LABELED AS: 6. Site Inspection Report/Memorandum Attachment 1 Discharge Location/Topographic Map Attachment 2 Schematic/Plans & Specs/Site Map/Water Balance Attachment 3 TABLE I - Discharge/Outfall Description Attachment TABLE II - Effluent Monitoring/Limitations Attachment Effluent Limitations/Monitoring Rationale/Suitable Attachment___ Data/Antidegradation/Antibacksliding Special Conditions Rationale Attachment Material Storage Attachment Toxics Monitoring/Toxics Reduction/WET Limit Rationale Attachment Receiving Waters Info./Tier Determination/STORET Data/Stream Attachment 10 Modeling/303(d) Listed Segments TABLE III(a) and TABLE III(b) - Change Sheets Attachment NPDES Industrial Permit Rating Worksheet Attachment 12 Public Participation/Pertinent Correspondence Attachment 13

APPLICATION COMPLETE: June 19, 2015

PERMIT CHARACTERIZATION: (Check as many as appropriate) 7. (X) Effluent Limited (X) Existing Discharge (X) Water Quality Limited () Proposed Discharge () WET Limit () Municipal () Interim Limits in Permit SIC Code(s) () Interim Limits in Other Document (X) Industrial () Compliance Schedule Required SIC Code(s)2611, 2621, 2679 () Site Specific WQ Criteria () POTW () Variance to WQ Standards () PVOTW () Water Effects Ratio (X) Private (X) Discharge to 303(d) Listed Segment () Federal (X) Toxics Management Program Required () State () Toxics Reduction Evaluation () Publicly-Owned Industrial (X) Storm Water Management Plan () Pretreatment Program Required (X) Possible Interstate Effect () CBP Significant Dischargers List Receiving Stream Outfall No(s). 8. 001 (and internal Blackwater River Outfall 103) River Mile: 5ABLW000.62 Basin: Chowan and Dismal Swamp Subbasin: Chowan River Section: 1 Class: II Special Standard(s): NEW-21 7-Day/10-Year Low Flow: 1.36 MGD (Nov-Mar) 1-Day/10-Year Low Flow: 0.22 MGD (Nov-Mar) 30-Day/5-Year Low Flow: 29.3 MGD (Nov-Mar) 702.2 MGD (Nov-Mar) Harmonic Mean Flow: YES Tidal: Blackwater River 002 River Mile: 5ABLW0013.73 Basin: Chowan and Dismal Swamp Subbasin: Chowan River Section: 1 Class: II Special Standard: NEW-21 7-Day/10-Year Low Flow: 1.36 MGD (Nov-Mar) 1-Day/10-Year Low Flow: 0.22 MGD (Nov-Mar) 30-Day/5-Year Low Flow: 29.3 MGD (Nov-Mar) Harmonic Mean Flow: 702.2 MGD (Nov-Mar) YES Tidal: 006, 007, 010, Washole Creek 012, 013, 014 River Mile: 5AKNG000.04 Basin: Chowan and Dismal Swamp Subbasin: Chowan River Section: 2 Class: VII Special Standard: NEW-21 0 MGD 7-Day/10-Year Low Flow: 1-Day/10-Year Low Flow: N/A MGD N/A MGD 30-Day/5-Year Low Flow: N/A MGD Harmonic Mean Flow: NO Tidal:

Kingsale Swamp 008, 009, 011 River Mile: 5AKNG004.66 Basin: Chowan and Dismal Swamp Subbasin: Chowan River Section: 2 Class: VII Special Standard: NEW-21 MGD 7-Day/10-Year Low Flow: N/A MGD 1-Day/10-Year Low Flow: N/A MGD 30-Day/5-Year Low Flow: N/A MGD Harmonic Mean Flow: Tidal: NO Beaverdam Swamp 015 River Mile: Basin: Chowan and Dismal Swamp Subbasin: Chowan River Section: 2 Class: VII Special Standard: NEW-21 MGD 0 7-Day/10-Year Low Flow: N/A MGD 1-Day/10-Year Low Flow: N/A MGD 30-Day/5-Year Low Flow: N/A MGD Harmonic Mean Flow: NO Tidal: FACILITY DESCRIPTION: Describe the type facility from which the discharges originate. Existing industrial discharge resulting from the manufacture of fluff pulp, tissue and recycled (converted) papers, which are generated from raw timber, purchased wood chips and sorted office waste paper from the fiber recycling plant. Production facilities, administrative offices and warehousing operations are located on the mill site. International Paper - Franklin Mill operates one machine which produces fluff pulp. Operations include a pulp mill, in addition to a new process of producing tissue by TAK Investments, Inc., which includes a deinking facility and a tissue manufacturing and converting process to manufacture recycled tissue. A point source discharge of process wastewater from all ongoing operations occurs during a two month period at outfall 001. () No (X) Yes LICENSED OPERATOR REQUIREMENTS: Industrial Facility - NA RELIABILITY CLASS: SITE INSPECTION DATE: Nov 6-7, 2013 REPORT DATE: December 10, 2013

10.

11.

12.

Performed By: Clyde Gantt

SEE ATTACHMENT 1

9.

DISCHARGE(S) LOCATION DESCRIPTION: Provide USGS Topo which indicates the discharge 13. location, significant (large) discharger(s) to the receiving stream, water intakes, and other items of interest.

Name of Topo: _Riverdale Quadrant No.: 05C Outfall 001: Outfalls 002, 006, Name of Topo: Franklin_____ Quadrant No.: 05B 007, 010, 012, 013, 014, 015 Name of Topo: Holland Quadrant No.: 05A Outfalls 008, 009, 011

SEE ATTACHMENT 2

ATTACH A SCHEMATIC OF THE WASTEWATER TREATMENT SYSTEM(S) [IND. & MUN.]. FOR 14. INDUSTRIAL FACILITIES, PROVIDE A GENERAL DESCRIPTION OF THE PRODUCTION CYCLE(S) AND ACTIVITIES. FOR MUNICIPAL FACILITIES, PROVIDE A GENERAL DESCRIPTION OF THE TREATMENT PROVIDED.

SEE ATTACHMENT 3

7	5.	DISCUSPEE	DESCRIPTION:	SEE	ATTACHMENT	Δ
T	э.	DISCHARGE	DESCRIPTION:	ಎಬಒ	WITWCUMBIAT	-4

COMBINED TOTAL FLOW: 16.

TOTAL:	126	· •	MGD	(for	publ	ic not	cice)			
PRO	CESS	FLOW:	12	25.		MGD	(IND	.)		
NON	IPROC!	ESS/RAIN	IFALL	DEPEN	IDENT	FLOW:		L MGD	*******	_(Est.)
DES	IGN	FLOW:			MGI	O (MUN	.)			

STATUTORY OR REGULATORY BASIS FOR EFFLUENT LIMITATIONS AND SPECIAL CONDITIONS: 17.

(Check all which are appropriate)

- X State Water Control Law
- X Clean Water Act
- VPDES Permit Regulation (9 VAC 25-31-10 et seq.)
- EPA NPDES Regulation (Federal Register)
- X EPA Effluent Guidelines (40 CFR 133 or 400 471)
- Water Quality Standards (9 VAC 25-260-5 et seq.)
- X Wasteload Allocation from a TMDL or River Basin Plan
- EFFLUENT LIMITATIONS/MONITORING: Provide all limitations and monitoring 18. requirements being placed on each outfall.

SEE TABLE II - ATTACHMENT 5

EFFLUENT LIMITATIONS/MONITORING RATIONALE: Attach any analyses of an outfall by 19. individual toxic parameter. As a minimum, it will include: statistics summary (number of data values, quantification level, expected value, variance, covariance, 97th percentile, and statistical method); wasteload allocation (acute, chronic and human health); effluent limitations determination; input data listing. Include all calculations used for each outfall and set of effluent limits and those used in any model(s). Include all calculations/documentation of any antidegradation or antibacksliding issues in the development of any limitations; complete the review statements below. Provide a rationale for limiting internal waste streams and indicator pollutants. Attach chlorine mass balance calculations, if performed. Attach any additional information used to develop the limitations, including any applicable water quality standards calculations (acute, chronic and human health).

OTHER CONSIDERATIONS IN LIMITATIONS DEVELOPMENT:

VARIANCES/ALTERNATE LIMITATIONS: Provide justification or refutation rationale for requested variances or alternatives to required permit conditions/limitations. This includes, but is not limited to: waivers from testing requirements; variances from technology guidelines or water quality standards; WER/translator study consideration; variances from standard permit limits/conditions.

SUITABLE DATA: In what, if any, effluent data were considered in the establishment of effluent limitations and provide all appropriate information/calculations.

All suitable effluent data were reviewed.

ANTIDEGRADATION REVIEW: Provide all appropriate information/calculations for the antidegradation review.

Outfall 001 is maintained as a Tier 1 water based on discharges to impaired stream. Outfalls 008, 009, and 011 discharge to intermittent streams and therefore are a Tier 1. With the receiving stream classification as tier 1, no further review is needed. All other outfalls a Tier cannot be determined since the receiving streams are Category 4C with Aquatic Life Use impairments due to naturally low dissolved oxygen.

Permit limits have been established by determining wasteload allocations which will result in attaining and/or maintaining all water quality criteria which apply to the receiving stream, including narrative criteria. These wasteload allocations will provide for the protection and maintenance of all existing uses.

ANTIBACKSLIDING REVIEW: Indicate if antibacksliding applies to this permit and, if so, provide all appropriate information.

There are no backsliding issues to address in this permit. Final effluent concentration limitations for TSS and BOD at outfall 001 increased with this reissuance, but these limitations are production based limits based on Federal Effluent Guidelines and are not subject to antibacksliding requirements. Annual load limitations based on a Water Quality Management Plan remain in effect for TSS and BOD at outfall 001 and have not changed.

SEE ATTACHMENT 6

20. <u>SPECIAL CONDITIONS RATIONALE</u>: Provide a rationale for each of the permit's special conditions.

SEE ATTACHMENT 7

21. TOXICS MONITORING/TOXICS REDUCTION AND WET LIMIT SPECIAL CONDITIONS RATIONALE:

Provide the justification for any toxics monitoring program and/or toxics reduction program and WET limit.

SEE ATTACHMENT 9

22. SLUDGE DISPOSAL PLAN: Provide a description of the sludge disposal plan (e.g., type sludge, treatment provided and disposal method). Indicate if any of the plan elements are included within the permit.

N/A

23. MATERIAL STORED: List the type and quantity of wastes, fluids, or pollutants being stored at this facility. Briefly describe the storage facilities and list, if any, measures taken to prevent the stored material from reaching State waters.

SEE ATTACHMENT 8

24. RECEIVING WATERS INFORMATION: Refer to the State Water Control Board's Water Quality Standards [e.g., River Basin Section Tables (9 VAC 25-260-5 et seq.). Use 9 VAC 25-260-140 C (introduction and numbered paragraph) to address tidal waters where fresh water standards would be applied or transitional waters where the most stringent of fresh or salt water standards would be applied. Attach any memoranda or other information which helped to develop permit conditions (i.e. tier determinations, PReP complaints, special water quality studies, STORET data and other biological and/or chemical data, etc.

SEE ATTACHMENT 10

25 <u>305(b)/303(d) Listed Segments</u>: Indicate if the facility discharges to a segment that is listed on the current 303(d) list and, if so, provide all appropriate information/calculations.

All Outfalls discharge to impaired 303d listed streams.

Outfall 001 discharges to the impaired lower Blackwater stream segment, VAT-K36R_BLW05A08. This segment is impaired for Aquatic Life Use - benthics and naturally low DO and for Fish Consumption Use - mercury.

Outfall 002 discharges to the middle Blackwater impaired segment, VAT-K36R_BLW03A08. This segment is impaired for Aquatic Life Use - naturally occurring low DO and Fish Consumption Use -mercury.

Outfalls 6,7,10 and 12-14 discharge to impaired segment VAT-K36R_BLW04A08. This segment is impaired for Aquatic Life Use - naturally occurring low DO, Recreation Use - Ecoli and Fish Consumption Use -mercury.

Outfalls 8, 9 and 11 discharge to impaired Unnamed tribs to Blackwater (VAT-K36R_ZZZ01A00) and 015 to impaired Blackwater segment, VAT-K36R_BLW02C10. These segments are impaired for Fish Consumption Use -mercury.

A Natural Conditions assessment was completed to confirm the DO impairments are due to natural conditions and therefore the development of a TMDL is not required. (Blackwater Dissolved Oxygen Assessment for Blackwater Swamp Waters: Approved 4/8/2010 *See TMDL Attachment 1) The current Assessment Category is "4C - Not needing a TMDL". During the next Triennial Review, this section of the Blackwater River is proposed to be changed from a Class II to a Class VII swamp water. Part of the Natural Conditions process is to determine anthropogenic impacts, if any, to the impairments. IP VA0004162 was identified as a point source discharging into the Blackwater River. Even so, data from the facility showed that it was very well controlled and not impacting the DO levels in the River. The D.O. condition is further addressed in Special Condition #14 "In-stream D.O. Monitoring During the Discharge Season, November-March". This condition, which was agreed upon during previous permit reissuance's provides in-stream WQ protection for D.O.; no additional monitoring is proposed at this time.

26. CHANGES TO PERMIT: Use TABLE III(a) to record any changes from the previous permit and the rationale for those changes. Use TABLE III(b) to record any changes made to the permit during the permit processing period and the rationale for those changes [i.e., use for comments from the applicant, VDH, EPA, other agencies and/or the public where comments resulted in changes to the permit limitations or any other changes associated with the special conditions or reporting requirements].

27. NPDES INDUSTRIAL PERMIT RATING WORKSHEET:

TOTAL SCORE: 140 SEE ATTACHMENT 12

- 28. <u>DEQ PLANNING COMMENTS RECEIVED ON DRAFT PERMIT</u>: Document any comments received from DEQ planning.
- 29. <u>PUBLIC PARTICIPATION</u>: Document comments/responses received during the public participation process. If comments/responses provided, especially if they result in changes to the permit, place in the attachment.

<u>VDH/DSS COMMENTS RECEIVED ON DRAFT PERMIT</u>: Document any comments received from the Virginia Dept. of Health and the Div. of Shellfish Sanitation and noted how resolved.

The VDH reviewed the application and waived their right to comment and/or object on the adequacy of the draft permit. Letter dated June 17, 2015.

The DSS reviewed the application and by Memorandum dated 6/22/15; this project will not affect shellfish growing waters.

EPA COMMENTS RECEIVED ON DRAFT PERMIT: Document any comments received from the U.S. Environmental Protection Agency and noted how resolved.

ADJACENT STATE COMMENTS RECEIVED ON DRAFT PERMIT: Document any comments received from an adjacent state and noted how resolved.

OTHER AGENCY COMMENTS RECEIVED ON DRAFT PERMIT: Document any comments received from any other agencies (e.g., VIMS, VMRC, DGIF, etc.) and noted how resolved.

Fish & Wildlife (8-13-15) and DCR (8-25-16) provided review of the application for T&E. No comments were offered other than a request to send appl to NC review for T&E.

OTHER COMMENTS RECEIVED FROM RIPARIAN OWNERS/CITIZENS ON DRAFT PERMIT: Document any comments received from other sources and note how resolved.

PUBLIC NOTICE INFORMATION: Comment Period: Start Date
End Date

Persons may comment in writing or by e-mail to the DEQ on the proposed reissuance of the permit within 30 days from the date of the first notice. Address all comments to the contact person listed below. Written or e-mail comments shall include the name, address, and telephone number of the writer, and shall contain a complete, concise statement of the factual basis for comments. Only those comments received within this period will be considered. The Director of the DEQ may decide to hold a public hearing if public response is significant. Requests for public hearings shall state the reason why a hearing is requested, the nature of the issues proposed to be raised in the public hearing and a brief explanation of how the requestor's interests would be directly and adversely affected by the proposed permit action.

All pertinent information is on file and may be inspected, and arrangements made for copying by contacting Debra L. Thompson at: Department of Environmental Quality (DEQ), Tidewater Regional Office, 5636 Southern Boulevard, Virginia Beach, VA 23462. Telephone: 757-518-2162 E-mail: debra.thompson@deq.virginia.gov

Following the comment period, the Board will make a determination regarding the proposed reissuance. This determination will become effective, unless the Director grants a public hearing. Due notice of any public hearing will be given.

30. ADDITIONAL FACT SHEET COMMENTS/PERTINENT INFORMATION:

This permit will continue to address/incorporate the new process at the repurposed International Paper Franklin Mill. The new process continues and is currently still at Phase I production levels and includes, a deinking facility, tissue manufacturing and converting process by TAK Investments, Inc. Production is proposed to increase over time in four phases. Therefore, final effluent limitations at outfall 001 for BOD and TSS are presented in the permit and are calculated in four phases corresponding to the production rate and effluent flow associated with the four implementation phases of the new process. Currently, the new process is still operating within phase I.

ATTACHMENT 1

SITE INSPECTION REPORT/MEMORANDUM

COMMONWEALTH of VIRGINIA

DEPARTMENT OF ENVIRONMENTAL QUALITY

TIDEWATER REGIONAL OFFICE

Doug Domenech Secretary of Natural Resources 5636 Southern Boulevard, Virginia Beach, Virginia 23462 (757) 518-2000 www.deq.virginia.gov

David K. Paylor Director

Maria R. Nold Regional Director

December 10, 2013

Via Email Ms. Jacquelyn Taylor International Paper 34030 Union Camp Drive Franklin, VA 23851

Re: Inspection Report

International Paper (VA0004162)

Dear Ms. Taylor:

Enclosed is a copy of the report prepared for the inspection conducted at International Paper on November 6-7, 2013. Please note the requirement and recommendation cited in the "Compliance Recommendations for Action" in the report summary.

If you have any questions regarding this report, please feel free to contact me at the above address, telephone (757) 518-2114 or email clyde.gantt@deq.virginia.gov.

Sincerely,

Clyde K. Gantt

VPDES/VPA Permit Inspector

Note: This letter is not intended as a case decision under the Virginia Administrative Process Act, Va. Code § 2.2-4000 et seq (APA).

Enclosure

cc: DEQ/TRO: File

Facility:	INTERNATIONAL PAPER
County/city:	Franklin

VPDES NO. **VA0004162**

DEPARTMENT OF ENVIRONMENTAL QUALITY WASTEWATER FACILITY INSPECTION REPORT PART 1

Inspection date:	Nov	ember 6-7,	2013 I	Date for	m completed:		???				
Inspection by:		Clyde Gant	t I	nspecti	on agency:		DEQ/TRO				
Time spent: 20 Hours Announced Inspection:						[] Yes	[X] No	**************************************			
Reviewed by: Kenneth T. Raum / 11-25-13				Pho	tographs taken a	t site?	[X] Yes	[] No			
Present at inspection:	Raye M	oore – Env.	Eng., (757)	635-91	59, raye.moore	@ipaper	com.				
FACILITY TYPE:				FAG	CILITY CLASS:						
() Municipal				(X)	Major						
(X) Industrial			***	() Minor							
() Federal				() Small							
() VPA/NDC				() High Priority () Low Priority							
TYPE OF INSPECTION:											
Routine X	Re	inspection			Complia	nce/assis	stance/com	plaint			
Date of previous inspection:		Janu	ary 25, 2011		Agency:			DEQ/TRO			
Outfall 103 Last Quarter Average:	BOD ₅ (mg/l)	??	TSS (mg/l)	??	Flow (MGD)		??	NH ₃ (mg/l)	??		
Effluent	Other:										
COPIES TO: (X) DEO/TRO: (X) OWNER: () OPERATOR: () Other:											

International Paper

VA0004162

THICET	.nacional raper							-		·	A T. T	0004.	T 02
	PLANT OPE	RATI	ON A	ND MAI	NTE	NAN	NCE						
1.	Class/number of licensed operators:	I	1	II	0		III	0	IV	0	Tra	inee	0
2.	Hours per day plant manned?								??				
3.	Describe adequacy of staffing			GOO	D		1	AVER.	AGE	X	PO	OR	
4.	Does the plant have an established program for trai	ning p	ersonr	nel						YES	X	NO	
5.	Describe the adequacy of training			GOO	D		1	AVER.	AGE	X	PO	OR	
6.	Are preventative maintenance tasks scheduled									YES	X	NO	
7.	Describe the adequacy of maintenance			GOO	D		1	AVER.	AGE	X	PO	OR	
	Does the plant experience any organic/hydraulic ov	erloac	ling?							YES		NO	X
8.	If yes, identify cause/impact on plant												
9.	Any bypassing since last inspection?									YES		NO	X
10.	Is the standby electrical generator operational?						Yl	ES		NO		NA	X
11.	When was the cross connection last tested on the po	otable	supply	y?							N/	A	
12.	2. Is the WWTP alarm system operational?							NO		NA			
13.	Is sludge disposed in accordance with an approved	SMP					Yl	ES		NO		NA	X
OVERALL APPEARANCE OF FACILITY GOOD AVERAGE									X	PO	OR		

COMMENTS:	
1	

1-4

	Sadosen a samara	65250403425544444		ADGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG				۷.۲۷	.0004	107
]	PLANT	RECORDS							
CH OF T	HE FOLL	OWING I	RECORDS DO	ES THE I	PLANT N	<i>IAINTA</i>	IN?			
ess unit					YES	X	NO		NA	
Instrument maintenance and calibration							NO		NA	
Mechanical equipment maintenance							NO		NA	
И	THAT DOE	ES THE C	PERATIONAL	LOG CC	ONTAIN		-			
Visual Observations Flow Measurement X							ratory Res	ults		X
X	(Control Ca	alculations				Other?			
							-			
OO THE N	<i>1ECHANI</i>	CAL EQU	JIPMENT REC	ORDS C	ONTAIN	?			NA	
X	A	As Built P	lans/specs		Spare Parts Inventory					X
X		Oth	ier?		Equipment/parts Suppliers					
OWING	RECORDS	S ARE AT	THE PLANT &	& AVAIL	ABLE TO) PERS	ONNEL?		NA	
e Record	S	X		Industr	ial Contr	ibutor F	Records			
x	Samp	ling/testir	ng Records	X		(nstrum	entation R	ecords		X
to perso	nnel at the	ir locatio	n:							
ing the in	spection						YES	X	NO	
O&M mar	ual curren	nt?					YES	X	NO	
the requi	red 3-year	time per	iod				YES	X	NO	
								•		·
	ess unit alibration nance W X DO THE M X X LOWING The to person ring the in D&M man	ess unit alibration nance WHAT DON X CONTHE MECHANI X X LOWING RECORD ce Records X Samp e to personnel at the ring the inspection D&M manual currer	ess unit alibration nance WHAT DOES THE C Flow Mea X Control Ca CO THE MECHANICAL EQU X As Built P X Oth LOWING RECORDS ARE AT ce Records X Sampling/testir e to personnel at their location ring the inspection D&M manual current?	ess unit alibration nance WHAT DOES THE OPERATIONAL Flow Measurement X Control Calculations OO THE MECHANICAL EQUIPMENT REC X As Built Plans/specs X Other? LOWING RECORDS ARE AT THE PLANT of the company of the control calculations of the control calculations. Sampling/testing Records to personnel at their location: ring the inspection	ess unit alibration nance WHAT DOES THE OPERATIONAL LOG CO Flow Measurement X Control Calculations OO THE MECHANICAL EQUIPMENT RECORDS CO X As Built Plans/specs X Other? LOWING RECORDS ARE AT THE PLANT & AVAILA ce Records X Sampling/testing Records X e to personnel at their location: ring the inspection D&M manual current?	ess unit YES alibration YES MHAT DOES THE OPERATIONAL LOG CONTAIN Flow Measurement X X Control Calculations OO THE MECHANICAL EQUIPMENT RECORDS CONTAIN X As Built Plans/specs X Other? E LOWING RECORDS ARE AT THE PLANT & AVAILABLE TO CORRECT SET OF THE PLANT & AVAILABLE TO CORRECT SET OF THE PLANT & AVAILABLE TO CORRECT SET OF THE PLANT & THE P	ess unit YES X alibration YES X MHAT DOES THE OPERATIONAL LOG CONTAIN Flow Measurement X Labo X Control Calculations DO THE MECHANICAL EQUIPMENT RECORDS CONTAIN? X As Built Plans/specs Spare X Control Calculations LOWING RECORDS ARE AT THE PLANT & AVAILABLE TO PERSONAL CONTAINS E to personnel at their location: Ining the inspection D&M manual current?	ess unit PES X NO Alibration PES X NO Alibration PES X NO MHAT DOES THE OPERATIONAL LOG CONTAIN Flow Measurement X Laboratory Res X Control Calculations Other? OO THE MECHANICAL EQUIPMENT RECORDS CONTAIN? X As Built Plans/specs X Other? Equipment/parts State LOWING RECORDS ARE AT THE PLANT & AVAILABLE TO PERSONNEL? CE Records X Industrial Contributor Records X Sampling/testing Records X Instrumentation Records Ting the inspection PES PES PES PES PES PES PES PE	PLANT RECORDS ICH OF THE FOLLOWING RECORDS DOES THE PLANT MAINTAIN? Less unit YES X NO Alibration YES X NO MHAT DOES THE OPERATIONAL LOG CONTAIN Flow Measurement X Laboratory Results X Control Calculations Other? OF THE MECHANICAL EQUIPMENT RECORDS CONTAIN? X As Built Plans/specs Spare Parts Inventory X Other? Equipment/parts Supplier LOWING RECORDS ARE AT THE PLANT & AVAILABLE TO PERSONNEL? CE RECORDS X Industrial Contributor Records X Sampling/testing Records X Instrumentation Records to personnel at their location: Ting the inspection YES X D&M manual current? YES X	PLANT RECORDS ICH OF THE FOLLOWING RECORDS DOES THE PLANT MAINTAIN? ICH OF THE FOLLOWING RECORDS DOES THE PLANT MAINTAIN? ICH OF THE FOLLOWING RECORDS DOES THE PLANT MAINTAIN? ICH OF THE FOLLOWING RECORDS ON A NA

VA0004162

		SAI	MPLING								
1.	Are sampling locations capable of providing	ng representative	e samples?				YES	\mathbf{x}	N	0	
2.	Do sample types correspond to VPDES pe	rmit requiremen	its?				YES	X	N	0	
3.	Do sampling frequencies correspond to VI	PDES permit req	uirements'	?			YES	X	N	0	
4.	Does plant maintain required records of sa		YES	X	N	0					
5.	Are composite samples collected in proportion to flow? YES								N	A	X
6.	Are composite samples refrigerated during collection?						NO		N	A	X
7.	Does the plant run operational control tests	s?			YES	X	NO		N.	A	
СОМ	IMENTS:										
		TI	ESTING								
	Who performs the testing?	Plant	X	Central Lab	,		Commercial Lab				
_	Name: River D.O. monitoring by Unive	rsal Labs, Rout	ine Analy	sis by J.R. Ree	d Labs,	Dioxin t	y Coli	umbia /	Analy	tical	
1.	Services.			_				***************************************			
1.	Services. IF THE PLANT PERFO	DRMS ANY TEST	TING, PLE	ASE COMPLE	TE QUE	STIONS	2-4				
2.			TING, PLE	ASE COMPLET	TE QUE	STIONS	2-4 N/A				
	IF THE PLANT PERFO	ed?			TE QUE	STIONS		YES	x	NO	
2.	IF THE PLANT PERFO	ed? ment to perform	required t		TE QUE.	STIONS		YES YES	x x	NO NO	+
2. 3. 4.	IF THE PLANT PERFO Which total residual chlorine method is us Does plant appear to have sufficient equip	ed? ment to perform	required t		TE QUE.	STIONS			+-	<u> </u>	\dashv
2. 3. 4.	IF THE PLANT PERFO. Which total residual chlorine method is us Does plant appear to have sufficient equip Does testing equipment appear to be clean	ed? ment to perform and/or operable	required t	ests?			N/A		+-	<u> </u>	\dashv
2. 3. 4.	Which total residual chlorine method is us Does plant appear to have sufficient equip Does testing equipment appear to be clean MENTS:	ed? ment to perform and/or operable CILITIES WIT	required to	ests? NOLOGY BAS	SED LIT		N/A		+-	<u> </u>	\dashv
2. 3. 4.	Which total residual chlorine method is us Does plant appear to have sufficient equip Does testing equipment appear to be clean MENTS: FOR INDUSTRIAL FA Is the production process as described in p	ed? ment to perform and/or operable CILITIES WIT ermit application	required to the second	ests? NOLOGY BASS escribe changes	SED LIF	MITS O	N/A	YES	+-	NO	\dashv

1-6

1110	ernacional Faper		VA0004102					
PRO	OBLEMS IDENTIFIED AT LAST INSPECTION:	CORRECTED	NOT CORRECTED					
	None							
	SUMMARY							
INS	PECTION COMMENTS:							
1	I arrived on site and met with Mr. Moore after checking in at the Guard House. It documents, the BMP Plan and the 2012 Blackwater River D.O. monitoring. The Bimonitoring met permit requirements for the discharge.							
2	The SWPPP, required by the permit to be implemented by Nov. 10, 2013 was in the been signed. I made some recommendations regarding potential pollutants.	final stages of com	pletion. It had not yet					
3	The quarterly visual and site inspections were available and up to date.							
	After the document review, Mr. Moore and I inspected the stormwater outfalls and follows: 002 – This drains the railroad tracks on the north side of the mill. Chemicals are u	-						
	is a constant groundwater flow from the outfall. No problems were noted. 006/007 – These outfalls receive runoff from along the railroad tracks between Washhole Creek and the treatment ponds. Both discharge into Washhole Creek. There was a flow of groundwater from outfall 007. No problems were noted. 008 – Landfill sediment basin #1. Low volume discharge. No problems noted.							
4	009 - Landfill sediment basin #3. Basin full of aquatic plants. No problems noted.							
	011 – Landfill sediment basin #2. No problems noted.		_					
	012/013 – Truck parking lot east of mill. There is a small sediment basin for outfall 013. No problems noted. 014 - Truck parking lot off of Union Camp Drive (Rt. 656). The lot is graded towards the north, then the northeast corner. There is a rip-rap berm and small sediment basin. The outfall is to the ditch along the road. I.P. staff has determined that all of the truck lots are substantially similar and only outfall 014 is monitored.							
	Stormwater in the mill area is all captured and pumped to the treatment ponds.							
5	On November 7, I returned to the facility. Mr. Moore and I inspected the wasteward is in use due to lower flows. Solids are dewatered with filter presses as needed and clarifier discharge flows through a long canal to the aerated pond. Wastewater in to "C" and "D" ponds prior to discharge.	used as cover in the	I.P. landfill. The					
6	The "C" and "D" ponds were not inspected. When there is a discharge in January, discharge sampled.	the ponds should b	e inspected and the					

COMPLIANCE RECOMMENDATIONS FOR ACTION: The facility must be evaluated each year for unauthorized discharges. The evaluation must be conducted during dry weather. Documentation should include the date, evaluator and any authorized or unauthorized non-stormwater discharges. It is recommended that the quarterly site inspections focus more on the stormwater BMPs in use and their effectiveness.

FACILITY: International Paper

1-7

STORMWATER MANAGEMEN	т			
Quarterly Visual Monitoring. Results available? PI, A.1.a	YES	Х	NO	
If Benchmark Monitoring is required, is it performed correctly and documented? PI.A.1.b.(1), PI.A.2.b	YES	N/A	NO	
Is Storm event data documented for each monitoring event? PI.A.2.c	YES	x	NO	
DMR submitted as required? PI.A.1.b.(3)	YES	N/A	NO	
Results and records available from all monitoring available? PII.B.1 & 2	YES	X	NO	
If Benchmark Monitoring exceeds the benchmark values was the SWP3 reviewed and modified as necessary? P1.A.5	YES	N/A	NO	
All corrective actions as are result from Inspections, CSCE, local state, federal officials documented and signed as required by Part II.K. PI.A.5.b	YES	N/A	NO	
Have changes to the site added/deleted Outfalls? SWP3 and Map updated? PI.B.9	YES	N/A	NO	
Stormwater Pollution Prevention Plan available, updated and signed? PIII.A, (Deadline for Plan), PIII.F.1 (Signature and location) PIII.G (Updated)	YES	х	NO	
Outfalls Identified in SWP3? Site Map with Drainage and Flows available? PIII.B.2.c.1-12	YES	х	NO	
Oil or other Hazardous Spills? PIII.B.4	YES	Х	NO	
Housekeeping and Preventive Maintenance? PIII.B.6.b.(1) & (3)	YES	х	NO	
Routine Inspections performed? (1/3M) PIII.B.6.b.(5)	YES	Х	NO	
Employee Training (Scheduled?) PIII.B.6.b.(6)	YES	Х	NO	
Comprehensive Site Compliance Evaluation and Report. Certification of Compliance or issues of non-compliance? Signed? PIII.E.3	YES	X	NO	
Annual evaluation for unauthorized discharges? PIII.E.1.h	YES		NO	X
Section 313 chemicals addressed?	·	х		

	UNIT PROCESS: SCREENING				IING					
								YES	NO	NA
1.	Number of manual unit	S		1						
2.	Number of mechanical units									
3.	Number manual units in operation									
4.	Number of mechanical	units in operation		1						
	Bypass channel provid	ed						х		
5.	Bypass channel in use								х	
6.	Area adequately ventila	ated						х		
7.	Alarm system for equip	ment failure and/or ov	erloads					х		
8.	Proper flow distribution	between units								х
9.	How often are units ch	ecked and cleaned			1 / Shift					
10.	Cycle of operation				Automatic					
11.	Volume of screenings removed				2.5 yrd ³ /	Month				
GENERAL CONDITION: GOOD					FAIR	х	Р	OOR	•	

,			
ı			
ı	CONMENTO.		
ı	COMMENIS:		
ı		·	

VA0004162

1-9

			UNIT PROCE	SS:	Pu	MP STA	ATION	_				
Witch	***************************************									YES	NO	NA
PUMP	CHARACTE	ERISTICS										
1.	Name of											
2.	Number o	of pumps?	5 at main	/ 2 at #2								
3.	Туре:	·	3 variable	rate & 2 fixed	rate / 2 fix	ed rate)		***************************************			
4.	4. Rated capacity: Not checked											
FOLLO	OWING EQU	IIPMENT OPER	ABLE									
5.	5. All pumps											
6.	6. Ventilation											X
7.	Control ed	quipment								х		
8. Sump pump												Х
9. Seal water system										х		···
ALARI	M SYSTEM	······································			W. H	.		·····				
10.	Type: Local X Telemetric X							Х	1913			
11.	Conditions monitored: High water level								······································	Х		
	High liquid level in dry well											Х
			Ma	in electric pow	er	·····			·····	Х		
			Au	xiliary electric p	ower						Х	
			Fa	ilure of pumps	to start						Х	
		***************************************	Te	st function					****************		х	
		***************************************	Ot	ner:								
22.	Backup fo	or alarm systen	n operational?									Х
23. Alarm signal reported to (identify): Treatment Plant/Guard House												
29. How often is the station checked? 1/Shift												
GENE	GENERAL CONDITION: GOOD FAIR X F								P	OOR	I	
COMMENTS: The pumps at both stations are outside, no ventilation is needed. The facility has two sources of elepower. It is produced by the mill and there is a feed from Dominion Power. #2 Pump station is for the ASB Pond discharge.									ectrical			

1-10

		UNI	T PROCESS:	SEDIMENTATIO	ON						
	PRIMARY	х	SECONDARY	TERTIARY			Γ	YES	NO	NA	
1.	Number of units			2	2						
2.	Number units in ope	eration		1	1						
3.	Proper flow distribut				х						
4.	Sludge collection system working properly?										
5.	Signs of short circui			х							
6.	Effluent weirs level							х			
7.	Effluent weirs clean							Х			
8.	Scum collection sys	tem working	properly							х	
9.	Influent/effluent baff	le system w	orking properly					Х			
10.	Chemical Used										
11.	Effluent characterist	ics		Re	eddish Brown						
GENE	RAL CONDITION:		GOOD	F	FAIR X						

COMMENTS:

UNIT PROCESS: PRESSURE FILTRATION (SLUDGE)

								YES	NO	NA		
1.	Number of units				2							
2.	Number units in operation	on			0							
3.	Amount of cake produce		150 yr	d ³ /day	200 miles							
4.	Filter run time		6-8 hr	s/day								
5.	Percent solids in influen	t		Unkr	nown							
6.	Percent solids in discha	rge		35	%							
7.	Sludge pumping?	Ma	anual X Aut			tic						
8.	Chemical feed	Ma	nual	x	Automa	tic						
9.	Condition chemical use	d:	Po	olymer	Dose:	l/day						
10.	Recirculating system inc	cluded on acid v	wash cyc	le?						х		
11.	Signs of overloading?								Х			
GENE	ERAL CONDITION:	GOOD		FAIR	x	F	POOR		·			
СОМ	COMMENTS:											

-372002

UNIT PROCESS:	AERATED STABILIZATION BASIN (ASB POND)
	•

		•													YES	NO	NA
1.	Туре	Aerat	ed	х	U	naerated	d			Poli	shing						
2.	Number of c	əlls		3													
3.	Number cells																
	Operation of	system															
4.	Ser	ies	es X Parallel Other:														
	Color										Light Br	own					
5.	Gray	В	rown		Green	x			Oth	ner:							
	EVIDENCE OF THE FOLLOWING PROBLEMS:																
	Vegetation in lagoon or dikes?															Х	
	Rodents bur	rowing on dil	es?													Х	
	Erosion?												······			Х	
	Sludge bars	?				····										Х	
	Excessive fo	am?														Х	
6.	6. Floating material?												Х				
7.	If aerated, a	e lagoon co	ntents	mixed ad	equately'	>					······································				Х		
8.	If aerated, is	aeration sys	tem c	perating p	properly?										Х		
9.	Odors:	s	eptic		Earth	<u>/ </u>		None	X		Oth	ier:					
10.	Fencing inta	ct?													Х	**************************************	
11.	Grass maint	ained proper	ly?			·									Х		
12.	Level contro	valves work	ing p	roperly?		·											х
13.	Effluent disc	harge elevat	on?	·		Тор			Middle	€		Botton	n	Х			
14.	Freeboard					10 Fee	et										
15.	Appearance	of effluent?			(GOOD			FAIR			POOF	₹				х
	Are monitori	ng wells pres	ent?												Х		
٠	Are wells ad	equately pro	tectec	l from rund	off?												х
x	Are caps on	and secured	?														х
GENI	ERAL CONDI	TION:		G(OOD				F	AIR		×	I	*	POOR		
								·····				<u> </u>					
COM	There are two "curtains" that divide the pond into three cells. There was no discharge during the inspection. The monitoring wells were not inspected.												schai	ge du	nspectio	on.	

-11-

Photo #1. ASB Pond, looking north.

Photo #2. ASB Pond discharge canal and one the discharge pumps.

Deleted: i

ATTACHMENT 2

DISCHARGE LOCATION/TOPOGRAPHIC MAP

2-4

<u>Outfall</u>	<u>Latit</u>	<u>ude</u>		Long	gitude	*	Receiving Water
002	36	40'	45"	. 76	55'	00"	Blackwater River
006	36	40'	15"	76	54'	45"	Washole Creek
007	36	40'	15"	76	54'	45"	Washole Creek
800	.36	40'	15"	76	52'	30"	Kingsale Swamp
009	36	40'	15"	76	52'	. 30"	Kingsale Swamp
011	36	41'	00"	76	51'	45"	Kingsale Swamp
012	36	40'	45"	76	54'	15"	Washole Creek
013	36	40'	45"	76	54'	30"	Washole Creek
014	36	40'	30"	76	54'	00"	Washole Creek

ATTACHMENT 3

SCHEMATIC/PLANS & SPECS/SITE MAP/ WATER BALANCE

Water Flow Line Drawing Form 2C Section II.A

International Paper - Franklin Mill VPDES Permit No VA0004162

F Bleach Line

Current Configuration Softwood Furnish Enrolled in Cluster Rule Voluntary Advanced Technology Incentives Program (VATIP) Currently VATIP Tier I Compliant

Wood

Handwood Furnish Softwood furnish

> VPDES Permit Application International Paper Camp Mill

EPA I.D. NUMBER (copy from Item 1 of Form 1)

Please print or type in the unshaded areas only.

VAD003112265

Form Approved. OMB No. 2040-0086. Approval expires 3-31-98.

FORM 2C NPDES

U.S. ENVIRONMENTAL PROTECTION AGENCY APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER EXISTING MANUFACTURING, COMMERCIAL, MINING AND SILVICULTURE OPERATIONS

Consolidated Permits Program

	LOCATION											
	~							the receiving water.				
	L NUMBER		B. LATITUDE			. LONGITUDI		D. RECEIVING WATER (name)				
(1)	131)	1. DEG.	2. MIN.	3. SEC.	1. DEG.	2, MIN. 54.00	3. SEC.					
001		36.00	33.00	13.40	76.00	BLACKWATER RIVER	TA OIL)					
103		36.00	40.00	49.00	76.00	54.00	46.00	INTERNAL OUTFALL (F BLEA	CH)			
								-				
II. FLOWS,	SOURCES	OF POLLUTI	ON, AND TRI	EATMENT TO	CHNOLOGI	ES						
labeled treatme source:	to corresponent units, and so of water and	d to the more outfalls, if a lany collection	e detailed des water balance on or treatme	criptions in It e cannot be on t measures.	em B. Constr letermined (e	uct a water ba .g., for certair	alance on the mining activ	perations contributing wastewater to the eff line drawing by showing average flows bet ities), provide a pictorial description of the	ween intakes, nature and am	operations, ount of any		
B. For each and sto	orm water rur	vide a descr noff; (2) The	iption of: (1) average flow	All operations v contributed	contributing by each ope	wastewater teration; and (o the effluent 3) The treate	t, including process wastewater, sanitary w ment received by the wastewater. Continu	astewater, co- le on addition	oling water, al sheets if		
1. OUT-		2. OPER	ATION(S) CO	ONTRIBUTIN	G FLOW			3. TREATMENT				
FALL NO. (list)	a	OPERATION	J (lier)	b.	AVERAGE F			a, DESCRIPTION	b. LIST CODES FROM TABLE 2C-1			
001	SEE ATTACHE		1 (1.01)	_								
001												
					·····							
103	SEE ATTACHED											
103												
		····										
			····									

						······································			-			
												
			·····									
	· ·									<u> </u>		
OFFICIA	L USE ONLY	(effluent guid	elines suh-cate	gories)								

Please print or type in the unshaded areas only.

EPA ID Number (copy from Item 1 of Form 1) VAD003112265

Form Approved. OMB No. 2040-0086 Approval expires 5-31-92

FORM 2F PA

U.S. Environmental Protection Agency Washington, DC 20460

Application for Permit to Discharge Storm Water Discharges Associated with Industrial Activity

Paperwork Reduction Act Notice

Public reporting burden for this application is estimated to average 28.6 hours per application, including time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate, any other aspect of this collection of information, or suggestions for improving this form, including suggestions which may increase or reduce this burden to: Chief, Information Policy Branch, PM-223, U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Director, Office of Information and Regulatory Affairs, Office of Management and Budget, Washington, DC 20503.

I. Outfall Location

For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water.

A. Outfall Number (list)		B. Latitude			C. Longitude		D. Receiving Water (name)
002	36.00	40.00	47.00	76.00	54.00	59.50	Blackwater River
006, 010	36.00	40.00	14.70	76.00	54.00	39.80	Washole Creek
007	36.00	40.00	14.10	76.00	54.00	38.50	Washole Creek
008	36.00	40.00	53.00	76.00	52.00	8.80	Kingsale Swamp
009	36.00	41.00	4.30	76.00	52.00	1.00	Kingsale Swamp
011	36.00	41.00	0.70	76.00	51.00	41.20	Kingsale Swamp
012	36.00	40.00	40.50	76.00	54.00	22.10	Washole Creek
013	36.00	40.00	47.20	76.00	· 54.00	20.10	Washole Creek
014	36.00	40.00	29.90	76.00	54.00	0.80	Washole Creek
015	36.00	42.00	51.70	76.00	54.00		Blackwater River

II. Improvements

A. Are you now required by any Federal, State, or local authority to meet any implementation schedule for the construction, upgrading or operation of wastewater treatment equipment or practices or any other environmental programs which may affect the discharges described in this application? This includes, but is not limited to, permit conditions, administrative or enforcement orders, enforcement compliance schedule letters, stipulations, court orders, and grant or loan conditions.

1. Identification of Conditions.		2. Affected Outfalls		4. Final Compliance Date		
Agreements, Etc.	number	source of discharge	Brief Description of Project	a. req.	b. proj.	
/A						

	1					

B: You may attach additional sheets describing any additional water pollution (or other environmental projects which may affect your discharges) you now have under way or which you plan. Indicate whether each program is now under way or planned, and indicate your actual or planned schedules for construction.

III. Site Drainage Map

Attach a site map showing topography (or indicating the outline of drainage areas served by the outfalls(s) covered in the application if a topographic map is unavailable) depicting the facility including: each of its intake and discharge structures; the drainage area of each storm water outfall; paved areas and buildings within the drainage area of each storm water outfall, each known past or present areas used for outdoor storage of disposal of significant materials, each existing structural control measure to reduce pollutants in storm water runoff, materials loading and access areas, areas where pesticides, herbicides, soil conditioners and fertilizers are applied; each of its hazardous waste treatment, storage or disposal units (including each area not required to have a RCRA permit which is used for accumulating hazardous waste under 40 CFR 262.34); each well where fluids from the facility are injected underground; springs, and other surface water bodies which received storm water discharges from the facility.

FORM 2 C - Section II.B INSERT

1. Outfall	2. Operations Contributing F	low	3. Treatment	
No.	a. Operation (list)	b. Average Flow	a. Description	b. List Codes
		(mgd)		from Table 20
			PRIMARY TREATMENT	THOM TODIC 20
001	Kraft Pulping & Recovery (SIC 2611)	10.8 (1)	Mechanical Bar Screens	1 _{1-T}
	(Includes woodyard, batch and continuous			
	digesters; chemical and heat		Screened Material to	
	recovery operations; turpentine		Landfill	5-Q
	processing; power and steam			0 0
	generation, pulp bleaching, fluff pulp forming			ALL PROPERTY OF THE PROPERTY O
	and tissue manufacturing		Clarification	1-U
103	Bleaching Operations		Clarifier #1 - 230 ft diameter	
	F Bleach Line (Internal outfall)	2.7 (1)	2 - 800 gpm sludge pumps	
	The F bleach line employs Advanced ECF		Clarifier #2 - 205 ft diameter	
	bleaching technology to achieve Tier I VATIP		2 - 800 gpm sludge pumps	
	(Voluntary Advanced Technology Incentives Prog	iram)	Sludge Dewatering	5-C & 5-L
001	Tissue Manufacturing and Converting		2 - 2.0 Meter Belt Filter Presses	0000
	SIC 2621,2679	· ' ' ' ' '	w/ gravity thickeners	
	(Includes deinking, tissue manufacturing		9.2.11	
	and converting by ST Tissue mfg, Phase 1)		90 tons/day capacity each	
001	Other		Sludge Feed Tank (62,000 gals)	er un properties de la company
	Sawmill Activities (SIC 2421) (4)		3 Centrifugal Sludge Feed Pumps	
	(kiln blowdown and stormwater from around a		Solids to Landfill	5-Q
	repair shop that has been pretreated through an			
	oil water separator from Franklin Lumber Co.)	0.001		
001	Stormwater Runoff (25 yr/24Hr Peak) (2) (3)		SECONDARY TREATMENT	- conference and
	Bleach Plant	5.00	Overflow from the clarifiers,	
	Main Mill		stormwater runoff & landfill	
	Cust. Svc. & Main Mill Channel Areas		leachate, receive secondary	
	East Channel/High Gr/Main Off. Areas	93.00	treatment as follows:	
	South Woodyard	40.00		
	Sheet Finishing	51.00	Aerated Stabilization Basin	3 - B
***************************************	Highground Pond	2.90	HRT = 7 days	
	Fiber Recycling Plant Area	3.90	Total Aeration HP = 1650	
004	Remote Coal Storage Pile	0.17	Two Baffle Curtains	
001	Misc			
And and a second a			Holding Pond (C Pond)	3-G
	910 Turbine Generator (5)	0.01	11 Billion Gallon Class II Dam	
N-+	Active Landfill - Leachate (5)	0.03	for effluent storage from April - Oct	
Notes:	46			
	ured from 2/2013 - 2/2015		Discharge Channel (D Pond)	None
(2) Stormwater	flows are peak values based on a report from Davis and		Conveyance channel for effluent	
	997 and are based on a 25 Yr/24 hr rainfall event.		releases (Nov - Mar)	
	flows are accounted for in the average			
iows to the Effit	uent Treatment System; the peak number indicated is		Outfall 001	4-A
A) The and is	s not included in this average number.			
4) The sawmiii	is not part of the facility proper.			
o) Liow blovide	d is an estimated nominal flow		The state of the s	

FORM 2 C - Section III.C INSERT Internal Outfall Information "F" Bleach Line

Outfall	Diam's I i	l lens		Unfinished Pulp Entering Bleach Plant			
Number	Bleach Line	Bleaching Sequence	Fiber Furnish	Maximum Daily Production (ADTPD)	Long-Term Avg Production (ADTPD)	Long-Term Avg Flow (MGD)	
103	F	ODED	SW	1,320	920	2.73	
103	F	ODED (w/semi)	SW	TBD	TBD	2.13	

ADTPD

Air Dried Tons per Day

SW

Softwood furnish

Semi

Semi-bleached pulp comes off the O2 stage without entering the bleach plant

TBD

Future fluff pulp product to be determined at a later date

Flows are projected estimates.

Production rate as defined at 40 CFR 430.01n

ATTACHMENT 5

TABLE II - EFFLUENT MONITORING/LIMITATIONS

OUTFALL# __001

Outfall Description: Process wastewater, Phase I

SIC CODE: 2611

(X) Final Limits Effective Dates - From: Effective To: The first full discharge season after TAK Investments, Inc. Phase II begins

(X) Final Limits Effective Da	tes - From: Ei	rective 10: The fi	rst full discharg	ge season aner	IAK IIIVESUI	nents, Inc. Phase	n begins	
	BASIS FOR	MULTIPLIER OR	DISCH	ARGE LIMITA	TIONS	MONITORING REQUIREMENTS[a]		
PARAMETER & UNITS	LIMITS	PRODUCTION	MONTHLY AVERAGE	MINIMUM	MAXIMUM	FREQUENCY	SAMPLE TYPE	
Flow (MGD)[b]	3		NL	NA	NL	1/D	MEAS	
Flow, Seasonal (MG)[b]	2		NA	NA	14000	1/M	MEAS	
pH (S.U.)[d]	2		NA	6.0	9.0	1/W	GRAB	
TSS (mg/l)[c][d]	3		292	NA	584	1/W	GRAB	
TSS (lb/sea x 10 ⁶)	2		NA	NA	2.88	1/M	GRAB	
BOD5 (mg/l)[c][d]	3		143	NA	286	1/W	GRAB	
BOD5 (lb/sea x 10 ⁶)	2		NÀ	NA	4.4	1/M	GRAB	
COD (mg/l)[c]	3		NL	NA	NL	1/M	GRAB	
Color, PCU	3		NL	NA	NL	1/W	GRAB	
Nitrogen, Total as N (mg/l)	3		NL	NA	NL	1/M	GRAB	
Phosphorus, Total as P (mg/l)	2		2	NA	NL	1/W	GRAB	
Phosphorus, Total (lb/sea x 10 ⁶)	3		NA	NA	0.2	1/M	GRAB	
Ammonia, as N (mg/l)[c]	2		2.15	NA	3.19	1/M	GRAB	
Ammonia, as N (lb/sea x 10 ⁶) [c]	2		0.22	NA	0.32	1/M	GRAB	
2,3,7,8-TCDD (pg/l)[a][c]	4		0.02	NA	0.02	1/SEA	GRAB	
2,3,7,8-TCDD (lb/sea x 10 ⁻⁵) [a][c]	4		NA	NA	0.19	1/SEA	GRAB	
2,3,7,8-TCDF (pg/l)[a][c]	3		NA	NA	NL	1/SEA	GRAB	
2,3,7,8-TCDF (lb/sea x 10 ⁻⁵) [a][c]	3		NA	NA	NL	1/SEA	GRAB	
AOX (mg/l)[c][d]	1		21	NA	47	1/M	GRAB	
AOX (lb/season)[c]	1		NL	NA	175,000	1/M	GRAB	

NA = NOT APPLICABLE; NL = NO LIMIT, MONITORING REQUIREMENT ONLY;

1/Season = November 1 - March 31.

- 1. Federal Effluent Guidelines
- 2. Water Quality Standards (9 VAC 25-260 et. seq.)
- 3. Best Professional Judgment
- 4. North Carolina Water Quality Standards (NCAC, Ch.2, Subch. 2B, ≥.0208)

[[]a] See Special Condition I.B.11 for additional information concerning sampling methodology.

[[]b] Flow rate shall be measured by daily recording of the settings on properly calibrated discharge gates.

[[]c] See Special Conditions I.B.6 and I.B.7 for additional information concerning Quantification Levels (QLs) and compliance reporting.

[[]d] See Special Condition I.B.9 for effluent monitoring frequency requirements

5-2

TABLE II - INDUSTRIAL MAJOR EFFLUENT LIMITATIONS

OUTFALL # __001

Outfall Description: Process wastewater, Phase II

SIC CODE: 2611

(X) Final Limits Effective Dates - From: The beginning of the first full discharge season after TAK Investments, Inc. Phase II

begins To: The first full discharge season after TAK Investments, Inc. Phase III begins

	BASIS FOR	MULTIPLIER OR PRODUCTION	DISCH	ARGE LIMITA	TIONS	MONITORING REQUIREMENTS[a]	
PARAMETER & UNITS	LIMITS		MONTHLY AVERAGE	MINIMUM	MAXIMUM	FREQUENCY	SAMPLE TYPE
Flow (MGD)[b]	3		NL	NA	NL	1/D	MEAS
Flow, Seasonal (MG)[b]	2		NA	NA	14000	1/M	MEAS
pH (S.U.)[d]	2		NA	6.0	9.0	1/W	GRAB
TSS (mg/l)[c][d]	3		307	NA	614	1/W	GRAB
TSS (lb/sea x 10 ⁶)	2		NA	NA	2.88	1/M	GRAB
BOD5 (mg/l)[c][d]	3		155	NA	310	1/W	GRAB
BOD5 (lb/sea x 10 ⁶)	2		NA	NA	4.4	1/M	GRAB
COD (mg/l)[c]	3		NL	NA	NL	1/M	GRAB
Color, PCU	3		NL	NA	NL	1/W	GRAB
Nitrogen, Total as N (mg/l)	3		NL	NA	NL	1/M	GRAB
Phosphorus, Total as P (mg/l)	2	: :	2	NA	NL	1/W	GRAB
Phosphorus, Total (lb/sea x 10 ⁶)	3		NA	NA	0.2	1/M	GRAB
Ammonia, as N (mg/l)[c]	2		2.15	NA	3.19	1/M	GRAB
Ammonia, as N (lb/sea x 10 ⁶) [c]	2		0.22	NA	0.32	1/M	GRAB
2,3,7,8-TCDD (pg/l)[a][c]	4		0.02	NA	0.02	1/SEA	GRAB
2,3,7,8-TCDD (lb/sea x 10 ⁻⁵) [a][c]	4		NA	NA	0.19	1/SEA	GRAB
2,3,7,8-TCDF (pg/l)[a][c]	3		NA	NA	NL	1/SEA	GRAB
2,3,7,8-TCDF (lb/sea x) 10 ⁻⁵ [a][c]	3		NA.	NA	NL	1/SEA	GRAB
AOX (mg/l)[c][d]	1		21	NA	47	1/M	GRAB
AOX (lb/season)[c]	1		NL	NA	175,000	1/M	GRAB

NA = NOT APPLICABLE; NL = NO LIMIT, MONITORING REQUIREMENT ONLY;

1/Season = November 1 - March 31.

- 1. Federal Effluent Guidelines
- 2. Water Quality Standards (9 VAC 25-260 et. seq.)
- 3. Best Professional Judgment
- 4. North Carolina Water Quality Standards (NCAC, Ch.2, Subch. 2B, 3.0208)

[[]a] See Special Condition I.B.11 for additional information concerning sampling methodology.

[[]b] Flow rate shall be measured by daily recording of the settings on properly calibrated discharge gates.

[[]c] See Special Conditions I.B.6 and I.B.7 for additional information concerning Quantification Levels (QLs) and compliance reporting.

[[]d] See Special Condition I.B.9 for effluent monitoring frequency requirements

OUTFALL # __001

Outfall Description: Process wastewater, Phase III

SIC CODE: 2611

(X) Final Limits Effective Dates - From: The beginning of the first full discharge season after TAK Investments, Inc. Phase III

begins To: The first full discharge season after TAK Investments, Inc. Phase IV begins

	BASIS FOR	MULTIPLIER OR PRODUCTION	DISCH	ARGE LIMITA	TIONS	MONITORING REQUIREMENTS[a]	
PARAMETER & UNITS	LIMITS		MONTHLY AVERAGE	MINIMUM	MAXIMUM	FREQUENCY	SAMPLE TYPE
Flow (MGD)[b]	3		NL	NA	NL	1/D	MEAS
Flow, Seasonal (MG)[b]	2		NA	NA	14000	1/M	MEAS
pH (S.U.)[d]	2		NA	6.0	9.0	1/W	GRAB
TSS (mg/l)[c][d]	3		305	NA	610	1/W	GRAB
TSS (lb/sea x10 ⁶)	2		NA	NA	2.88	1/M	GRAB
BOD5 (mg/l)[c][d]	3		149	NA	298	1/W	GRAB
BOD5 (lb/sea x 10 ⁶)	2		NA	NA	4.4	1/M	GRAB
COD (mg/l)[c]	3		NL	NA	NL	1/M	GRAB
Color, PCU	3		NL	NA	NL	1/W	GRAB
Nitrogen, Total as N (mg/l)	3		NL	NA	NL	1/M	GRAB
Phosphorus, Total as P (mg/l)	2		2	NA	NL	1/W	GRAB
Phosphorus, Total (lb/sea x 10 ⁶)	3		NA	NA	0.2	1/M	GRAB
Ammonia, as N (mg/l)[c]	2		2.15	NA	3.19	1/M	GRAB
Ammonia, as N (lb/sea x 10 ⁶) [c]	2		0.22	NA	0.32	1/M	GRAB
2,3,7,8-TCDD (pg/l)[a][c]	4		0.02	NA	0.02	1/SEA	GRAB
2,3,7,8-TCDD (lb/sea x 10 ⁻⁵) [a][c]	4		NA	NA	0.19	1/SEA	GRAB
2,3,7,8-TCDF (pg/l)[a][c]	3		NA	NA	NL	1/SEA	GRAB
2,3,7,8-TCDF (lb/sea x 10 ⁻⁵) [a][c]	3		NA	NA	NL	1/SEA	GRAB
AOX (mg/l)[c][d]	1		21	NA	47	1/M	GRAB
AOX (lb/season)[c]	1		NL	NA	175,000	1/M	GRAB

NA = NOT APPLICABLE; NL = NO LIMIT, MONITORING REQUIREMENT ONLY;

1/Season = November 1 - March 31.

- 1. Federal Effluent Guidelines
- 2. Water Quality Standards (9 VAC 25-260 et. seq.)
- 3. Best Professional Judgment
- 4. North Carolina Water Quality Standards (NCAC, Ch.2, Subch. 2B, ∋.0208)

[[]a] See Special Condition I.B.11 for additional information concerning sampling methodology.

[[]b] Flow rate shall be measured by daily recording of the settings on properly calibrated discharge gates.

[[]c] See Special Conditions I.B.6 and I.B.7 for additional information concerning Quantification Levels (QLs) and compliance reporting.

[[]d] See Special Condition I.B.9 for effluent monitoring frequency requirements

OUTFALL# 001

Outfall Description: Process wastewater, Phase IV

SIC CODE: 2611

(X) Final Limits Effective Dates - From: The beginning of the first full discharge season after TAK Investments, Inc. Phase IV

begins To: expiration

begins 10: expiration	BASIS FOR	MULTIPLIER OR	DISCH.	ARGE LIMITA	TIONS	MONITO REQUIREM	
PARAMETER & UNITS	LIMITS	PRODUCTION	MONTHLY AVERAGE	MINIMUM	MAXIMUM	FREQUENCY	SAMPLE TYPE
Flow (MGD)[b]	3		NL	NA	NL	1/D	MEAS
Flow, Seasonal (MG)[b]	2		NA	NA	14000	1/M	MEAS
pH (S.U.)[d]	2		NA	6.0	9.0	1/W	GRAB
TSS (mg/l)[c][d]	3		310	NA	620	· 1/W	GRAB
TSS (lb/sea x 10 ⁶)	2		NA	NA	2.88	1/M	GRAB
BOD5 (mg/l)[c][d]	3		152	NA	304	1/W	GRAB
BOD5 (lb/sea x 10 ⁶)	2		NA	NA	4.4	1/M	GRAB
COD (mg/l)[c]	3		NL	NA	NL	1/M	GRAB
Color, PCU	3		NL	NA	NL	1/W	GRAB
Nitrogen, Total as N (mg/l)	3		NL	NA	NL	1/M	GRAB
Phosphorus, Total as P (mg/l)	2		2	NA	NL	1/W	GRAB
Phosphorus, Total (lb/sea x 10 ⁶)	3		NA	NA	0.2	1/M	GRAB
Ammonia, as N (mg/l)[c]	2		2.15	NA	3.19	1/M	GRAB
Ammonia, as N (lb/sea x 10 ⁶) [c]	2		0.22	NA	0.32	1/M	GRAB
2,3,7,8-TCDD (pg/l)[a][c]	4		0.02	NA	0.02	1/SEA	GRAB
2,3,7,8-TCDD (lb/sea x 10 ⁻⁵) [a][c]	4		NA	NA	0.19	1/SEA	GRAB
2,3,7,8-TCDF (pg/l)[a][c]	3		NA	NA	NL	1/SEA	GRAB
2,3,7,8-TCDF (lb/sea x 10 ⁻⁵) [a][c]	3		NA	NA	NL	1/SEA	GRAB
AOX (mg/l)[c][d]	1		21	NA	47	1/M	GRAB
AOX (lb/season)[c]	1		NL	NA	175,000	1/M	GRAB

NA = NOT APPLICABLE; NL = NO LIMIT, MONITORING REQUIREMENT ONLY;

1/Season = November 1 - March 31.

- Federal Effluent Guidelines 1.
- 2. 3. Water Quality Standards (9 VAC 25-260 et. seq.)
- Best Professional Judgment
- North Carolina Water Quality Standards (NCAC, Ch.2, Subch. 2B, 3.0208)

[[]a] See Special Condition I.B.11 for additional information concerning sampling methodology.

[[]b] Flow rate shall be measured by daily recording of the settings on properly calibrated discharge gates.
[c] See Special Conditions I.B.6 and I.B.7 for additional information concerning Quantification Levels (QLs) and compliance reporting.

[[]d] See Special Condition I.B.9 for effluent monitoring frequency requirements

OUTFALL # __103

Outfall Description: F Bleach Plant effluent

SIC CODE: 2611

(X) Final Limits Effective Dates - Issuance To: Expiration

(A) Final Limits Effective Dates - I	BASIS FOR	MULTIPLIER OR PRODUCTION	DISCHARGE LIMITATIONS			MONITORING REQUIREMENTS[a]	
PARAMETER & UNITS	LIMITS		MONTHLY AVERAGE	MINIMUM	MAXIMUM	FREQUENCY	SAMPLE TYPE
Flow (MGD)[b]	3		NL	NA	NL	1/M	MEAS
2,3,7,8-TCDD (pg/l)[c]	1		NA	NA	ND	1/Year	GRAB
2,3,7,8-TCDF (pg/l)[c]	1		NA	NA	31.9	1/Year	GRAB
Chloroform (ug/l)[c]	3		NL	NA	NL	1/Year	GRAB
Chloroform (g/day)[c]	1		3463	NA	5788	1/Year	GRAB
Trichlorosyringol (ug/l)[c]	1		NA	NA	ND	1/Year	GRAB
3,4,5-Trichlorocatechol (ug/l)[c]	1		NA	NA	ND	1/Year	GRAB
3,4,6-Trichlorocatechol (ug/l)[c]	1		NA	NA	ND	1/Year	GRAB
3,4,5-Trichloroguaiacol (ug/l)[c]	1		NA	NA	ND	1/Year	GRAB
3,4,6-Trichloroguaiacol (ug/l)[c]	1		NA	NA	ND	1/Year	GRAB
4,5,6-Trichloroguaiacol (ug/l)[c]	1		NA	NA	ND ·	1/Year	GRAB
2,4,5-Trichlorophenol (ug/l)[c]	1		NA	NA	ND	1/Year	GRAB
2,4,6-Trichlorophenol (ug/l)[c]	1		NA	NA	ND	1/Year	GRAB
Tetrachlorocatechol (ug/l)[c]	1		NA	NA	ND	1/Year	GRAB
Tetrachloroguaiacol (ug/l)[c]	. 1		NA	NA	ND	1/Year	GRAB
2,3,4,6-Tetrachlorophenol (ug/l)[c]	1		NA	NA	ND	1/Year	GRAB
Pentachlorophenol (ug/l)[c]	1		NA	NA	ND	1/Year	GRAB
Kappa Annual Average-Softwood [d]	1		20	NA	NA	1/M	GRAB
Kappa Monthly Average[d]	3		NL	NA	NA	1/M	GRAB

NA = NOT APPLICABLE; NL = NO LIMIT, MONITORING REQUIREMENT ONLY

1/Year = January 1 - December 31.

[a] See Special Condition I.B.15 for additional information concerning sampling methodology.

- [c] See Special Conditions I.B.6 and I.B.7 for additional information concerning Quantification Levels (QLs) and compliance reporting.
- [d] See Special Condition I.B.16 for additional information concerning Kappa Number measurement and reporting.

- 1. Federal Effluent Guidelines
- 2. Water Quality Standards (9 VAC 25-260 et. seq.)
- 3. Best Professional Judgment

[[]b] Flow rate shall be determined by measurement devices when available, and in the absence of such devices, by flow balances around and within the bleach plant sewer. All information used to determine flow rates shall be retained in accordance with Part II.B.

OUTFALL # 010 and 015

Outfall Description: untreated fresh groundwater resulting from periodic flushing of the water supply line

SIC CODE: 2611

(X) Final Limits Effective Dates - From: Issuance To: Expiration

(71) I mai Dinnis Litective Da	1 1 0 11 1 1	issuance 10. LAP	1141011				
PARAMETER & UNITS		MULTIPLIER OR PRODUCTION		ARGE LIMITA	MONITORING REQUIREMENTS		
	FOR LIMITS		MONTHLY AVERAGE	MINIMUM	MAXIMUM	FREQUENCY	SAMPLE TYPE
NO MONITORING REQUIRED	3						

THESE OUTFALLS SHALL CONTAIN UNTREATED FRESH GROUNDWATER WHERE NO MONITORING IS REQUIRED. THERE SHALL BE NO DISCHARGE OF PROCESS WASTEWATER OR STORMWATER FROM THESE OUTFALLS.

- 1. Federal Effluent Guidelines
- 2. Water Quality Standards (9 VAC 25-260 et. seq.)
- 3. Best Professional Judgment

TABLE II - STORMWATER EFFLUENT LIMITATIONS

OUTFALL # 002, 006, 007, 008, 009, 011, 012, 013, 014

Outfall Description: 002 - storm water only from North rail yard area to Blackwater River; 006, 007 - storm water only from south end of facility to Washole Creek; 008, 009, 011 - storm water only from natural areas outside of landfill dike to Kingsale Swamp; 012, 013, 014 - storm water only from trailer parking area(s) (012 and 013) and from gravel lots for construction material and trailer storage (014) to Washole Creek

SIC CODE: 2611

THESE OUTFALLS SHALL CONTAIN STORMWATER RUNOFF ASSOCIATED WITH A REGULATED INDUSTRIAL ACTIVITY WHERE NO BIOLOGICAL MONITORING IS REQUIRED. THERE SHALL BE NO DISCHARGE OF PROCESS WASTEWATER FROM THESE OUTFALLS. THE PERMITTEE SHALL IMPLEMENT PROPER STRUCTURAL AND/OR NON-STRUCTURAL BMP's TO CONTROL POLLUTANTS FROM THESE OUTFALLS. SEE PART I.E.

- (1) Timber Products
- (2) Paper & Allied Products
- (3) Chemical & Allied Products
- (4) Asphalt Paving/Roofing Matls. & Lubricant
- (5) Glass, Clay, Cement, Concrete & Gypsum Products
- (6) Primary Metals
- (7) Metal Mining (Ore Mining & Dressing
- (8) Coal Mines & Coal Mining Related
- (9) Oil & Gas Extraction & Petroleum Refineries
- (10) Hazardous Waste Treatment, Storage, Disposal
- (11) Landfills, Land
 Application Sites & Open
 Dumps

- (12) Automobile Salvage Yards
- (13) Scrap/Waste Recycling
- (14) Steam Electric Power Generating, Inc. Coal Handling Areas
- (15) Motor Freight, Passenger, Rail, U.S. Postal Transportation & Petroleum Bulk Oil Stations and Terminals
- (16) Water Transportation With Maintenance and/or Equipment Cleaning
- (17) Ship/Boat Building or Repairing
- (18) Vehicle Maintenance,
 Equipment Cleaning or
 Deicing Areas At Air
 Transportation Facilities
- (19) Treatment Works

- (20) Food & Kindred Products
- (21) Textile Mills, Apparel & Other Fabric Products Mfg.
- (22) Wood & Metal Furniture and Fixture Mfg.
- (23) Printing & Publishing
- (24) Rubber, Miscellaneous Plastic Products & Miscellaneous Mfg.
- (25) Leather Tanning & Finishing
- (26) Fabricated Metal Products(27) Transportation Equipment,Industrial or Commercial
- Machinery Mfg.

 (28) Electronic & Electrical
 Equipment and Components,
 Photographic & Optical
- Goods Mfg.
 (29) Nonclassified Facilities

ATTACHMENT 6

EFFLUENT LIMITATIONS/MONITORING RATIONALE/SUITABLE DATA/
ANTIDEGRADATION/ANTIBACKSLIDING

VPDES PERMIT PROGRAM EFFLUENT LIMITATIONS AND MONITORING RATIONALE for International Paper-Franklin Mill

International Paper (IP) owns and operates the manufacturing at this facility; administrative offices, production facilities and warehousing operations are located on the mill site. IP operates one machine which produces fluff pulp. A tenant company, TAK Investments, Inc. also operates at the mill site and manufactures tissue. TAK Investments, Inc. operations include one paper machine, the fiber recycling plant, administrative offices and warehousing operations. The facility is subject to the federal Pulp, Paper and Paperboard Point Source Category effluent limitations guidelines (ELG) regulations at 40 CFR Part \$430, General Provisions, and 40 CFR \$430 Subpart B, Bleached Papergrade Kraft and Soda Subcategory, in addition to applicable Virginia water laws and regulations. The federal regulations affect outfall 001 and one internal outfall, 103. A copy of these applicable federal regulations is provided in this Attachment.

In addition to effluent monitoring for surface water discharge, the company has performed groundwater monitoring in accordance with an approved plan submitted in 2002/2003. Semi-annual monitoring and annual reporting requirements have continued as a part of the permit through each reissuance and modification since the groundwater plan was approved in 2003. The purpose of the plan is to evaluate the effects of the effluent seepage from the Aerated Stabilization Basin (ASB) to surrounding sensitive receptors. The groundwater wells are situated as receptors if the ASB ponds were to leak and naturally flow toward the Blackwater River. To date the groundwater data confirms and the reports conclude, that no significant changes have occurred in the water quality downgradient of the ASB and no exceedances of the comparison values for tested analytes have occurred. This report is submitted no later than March 31st each year in conjunction with the annual discharge season (November-March).

Out-Of-Season discharge special condition is continued in this reissuance. During the year, all process water is stored in the C pond until the discharge season begins November $1^{\rm st}$ and continues through March $31^{\rm st}$ at which time effluent is conveyed to D pond and discharged to state waters from that storage pond. An out-of-season discharge (September/October) is considered on a case-by-case basis from D pond ONLY. The monitoring requirements for this case-by-case discharge have been determined based on the fact that D pond is drained to the lowest point possible during the discharge season. After the discharge season, beginning April $1^{\rm st}$ each year, stormwater and ground water are the only sources entering D pond until the next discharge season begins November $1^{\rm st}$. Therefore the presence of dioxin and furans in the effluent during out-of-season discharge is not a concern; thus the monitoring exclusion in the special condition for these two pollutants.

6-2

Outfall 103 (F Bleach Line) (D and E Bleach Lines are currently "inactive")

The applicant has enrolled its F bleach line in the VATIP at the Tier I level and has qualified as Advanced ECF (Elemental Chlorine-Free). Bleach plant effluent from the F Bleach Line is regulated under 40 CFR \$430 and must meet Best Available Technology (BAT) effluent limitations imposed by 40 CFR §430, particularly \$430.24(b) (VATIP) and \$430.02 (monitoring requirements), at the point where the wastewater leaves the bleach plant. The plant has achieved compliance with the requirements, and the limits were initially placed in the permit effective January 19, 2000. The federal BAT minimum monitoring frequency requirements under 40 CFR \$430 are no longer applicable, as 40 CFR \$430.02(c) for plants enrolled in the VATIP specifies that monitoring at the specified frequencies shall continue for a duration of five years from the date the permit first included applicable limitations from subpart B. The permittee had asked that monitoring for those parameters addressed by \$430.02 be discontinued altogether; however, 40 CFR \$122.44(i) requires at least annual monitoring to determine compliance with the Federal ELG's for those parameters addressed by the ELG which contain limitations. Therefore, monitoring cannot be discontinued altogether. Monitoring for the applicable parameters was reduced effective at the issuance of the permit, to the maximum extent allowable under \$122.44(i). The sample type will be a grab sample. It is a staff BPJ decision that for facilities enrolled in the VATIP program that have demonstrated five years of compliance, a grab sample is sufficient to determine continued compliance with the ELG limits. Based on the list of parameters addressed in 40 CFR \$430.02(c), Kappa number is not included in the list of parameters where monitoring is reduced after five years.

Rationale for Effluent Limitations

Flow: The monitoring frequency is once per month and the Daily Maximum and Monthly Average effluent limitations are NL, based on BPJ. Flow balances are routinely used at the bleach line to control the bleaching process and are considered to be sufficiently accurate for effluent monitoring purposes, if direct measurements are not available. Therefore, flow rate shall be determined by measurement devices when available, and in the absence of such devices, by flow balances around and within the bleach plant sewer. All information used to determine flow rates shall be retained in accordance with Part II.B to allow later on-site inspection of flow measurement records. The measurement of flow is necessary to evaluate the potential impact of the discharge on receiving waters, including but not limited to the calculation of pollutant mass from concentration data, as well as to verify that federal mass-based ELGs have been appropriately implemented through conversion to concentration-based effluent limitations for this source.

TCDD, TCDF, chloroform, and the 12 chlorinated phenolic pollutants: Limitations are being established based on the federal ELGs, as follows. The applicant has enrolled its "F" bleach line in the VATIP at the Tier I Stage 2 level; the limitations are in effect. Therefore, Tier I Stage 2 limitations at 40 CFR \$430.24(b)(4) apply on permit reissuance date. Because the F bleach line employs Advanced ECF bleaching technology to achieve Tier I limitations, federal regulations at 40 CFR \$430.02(c), footnote (f) allow suspension of monitoring for these pollutants after one year of monitoring as an incentive for enrolling in the VATIP. However, based on the minimum monitoring required under 40 CFR \$122.44(i)(2), monitoring for these pollutants will be continued at a once per year frequency. The Minimum Levels specified at 40 CFR \$430.01(i) are being implemented as Quantification Levels (QLs), based on BPJ. "ND" shall mean non-detectable at the corresponding Quantification Level. A measured value equal to or greater than the QL shall be considered to exceed the

limitation. Effluent limitations (except for Chloroform) are being maintained at the same numerical values as for the prior monitoring period to ensure that the F bleach line continues to meet the baseline BAT level of performance, and are restated below:

	Daily	Monthly	Quantification
Parameter	Maximum	Average	Level (QL)
2,3,7,8-TCDD	ND*		10 pg/l**
2,3,7,8-TCDF	31.9 pg/1		10 pg/l
Trichlorosyringol	ND		2.5 ug/l
3,4,5-Trichlorocatechol	ND		5.0 ug/l
3,4,6-Trichlorocatechol	ND		5.0 ug/l
3,4,5-Trichloroguaiacol	ND		2.5 ug/l
3,4,6-Trichloroguaiacol	ND		2.5 ug/l
4,5,6-Trichloroguaiacol	ND		2.5 ug/l
2,4,5-Trichlorophenol	ND		2.5 ug/l
2,4,6-Trichlorophenol	ND		2.5 ug/l
Tetrachlorocatechol	ND		5.0 ug/l
Tetrachloroguaiacol	ND		5.0 ug/l
2,3,4,6-Tetrachlorophenol	ND		2.5 ug/l
Pentachlorophenol	ND		5.0 ug/l
Chloroform, g/d	3463	5788	
Chloroform, ug/l	NL	NL	

^{*}ND = Non-detectable at the Quantification Level specified.

Detection at the Quantification Level shall constitute an exceedance of the effluent limitation.

For chloroform, the federal baseline BAT ELG's at 40 CFR \$430.24(a)(1) are stated as a mass basis per unit of production (grams of chloroform per 1000 kg of air dried (10% moisture) brownstock pulp entering the first stage of the bleach plant (40 CFR \$430.01(n)(2)), as follows:

<u>Parameter</u>	Daily Maximum	Monthly Average	
Chloroform	6.92 g/kkg*	4.14 g/kkg *grams per 1000kilogra	ms

For purposes of enforceability, these production-based federal ELG's have been converted to mass-based effluent limitations. These limitations apply to the total "F" Bleach Line effluent. The monitoring frequency is monthly, as specified in 40 CFR \$430.02(c), however those plants certifying Advanced ECF, monitoring may be suspended after one year of monitoring; due to EPA requirements stipulating minimum monitoring frequency of 1/year, monitoring for chloroform was set at 1/year in the previous reissuance; this reissuance will continue the 1/year monitoring frequency. For the "F" Bleach Line, the maximum daily production rate is 920 US Tons (application data).

The daily maximum effluent limitation is 5788 g/day, The monthly average effluent limitation is 3463 g/day. Conversion to g/day was calculated as follows:

Daily Maximum

$$\frac{6.92 \text{ g}}{\text{kkg}} \times \frac{\text{kkg}}{2200 \text{ lb}} \times \frac{2000 \text{ lb}}{\text{Ton}} \times \frac{920 \text{ Ton}}{\text{day}} = \frac{5787.6 \text{ g}}{\text{day}} \text{ (rounded to } \frac{5788 \text{ g/day})}{\text{day}}$$

Monthly Average

$$\frac{4.14 \text{ g x}}{\text{Kkg}} \times \frac{\text{kkg}}{2200 \text{ lb}} \times \frac{2000 \text{ lb}}{\text{Ton}} \times \frac{920 \text{ Ton}}{\text{day}} = \frac{3462.5 \text{ g}}{\text{day}} \text{ (rounded to } \frac{3463 \text{ g/day})}{\text{day}}$$

^{**}pg/l = picograms per liter

IN ADDITION, based on best professional judgment, a daily maximum and monthly average CONCENTRATION-BASED, monitoring only "NL" is being continued from the previous permit.

AOX: The federal ELG for AOX discharged from the F bleach line applies to the facility's combined final effluent at Outfall 001 and is based on the AOX ELGs for the F bleach line. See Outfall 001 below for determination of AOX effluent limitations. (Limitations are reduced based on the inactive status of D and E Bleach Lines)

Kappa Number: Limitations are established based on the federal ELGs, as follows. The Kappa Annual Average-Softwood limitation of 20 S.U. is continued based on the federal ELGs. The Kappa Annual Average-Hardwood was removed from the permit during the 2012 modification because the permittee has stated that they will not be doing hardwood at the repurposed mill, only softwood. Based on BPJ, the Kappa Annual Average effluent limitations are being expressed as a 12-month rolling average, and the monitoring frequency is monthly, to allow monthly tracking of the facility's annual average Kappa Number. Additionally, based on BPJ, the Kappa Monthly Average effluent limitation of NL is continued to allow tracking of the individual monthly Kappa Number values that comprise the 12-month rolling average.

Final Effluent Outfall

Outfall 001

Process wastewater is stored in C pond and will be discharged via "D" pond during discharge seasons. Process wastewater will be generated from one internal bleach line (F Bleach Line) at the plant as part of the 2012 repurposing of the plant. Limits will be the similar to the previous permit, however revisions (to numeric limitations) will be made based on current processes and flows and current operations at the plant. Specific changes in internal processes and bleach-line specific production flows will be addressed at the internal outfall for the operational bleach line. (D and E Bleach lines are currently inactive).

The Blackwater River at the location of Outfall 001 is identified as a Tier 1 water and listed on the 303(d)listed streams. Because this permit limits routine seasonal discharges from outfall 001 to the months of November through March inclusive (see Special Condition I.B.13), all computations involving stream flow data will be limited to this discharge season.

The receiving stream flow statistics are as follows:

Blackwater River		
1Q10	0.22 mgd	(November-March)
7Q10	1.36 mgd	(November-March)
30Q5	29.3 mgd	(November-March)
30Q10	2 mgd	
Mean Annual		
Flow	702.2 mgd	<pre>(November-March at the VA-NC state line)</pre>

Flow: The measurement of flow is necessary to evaluate the potential impact of the discharge on receiving waters, including but not limited to the calculation of pollutant mass from concentration data, the consideration of mixing zone aspects and Instream Waste Concentration, evaluation of potential acute and chronic toxicity effects, and evaluation of wastewater handling and/or treatment system capacities. The effluent limitation for flow rate in MGD is established as NL Daily Minimum, NL Monthly Average and NL Daily Maximum, and the monitoring frequency is once per day, based on BPJ. The flow rate shall be accurately measured by daily recording of the settings on properly calibrated discharge gates and shall not be estimated. The effluent limitation for cumulative flow is established at 14 billion gallons (14,000 MG) per discharge season, based on the state Water Quality Management Plan, and the monitoring frequency is monthly, based on BPJ.

COD: The Water Quality Standards at 9 VAC 25-260-20 prohibit the presence of substances in amounts which interfere with designated uses and authorize the control of toxic substances or substances which may interfere with designated uses. EPA has indicated that it intends to promulgate COD limitations for 40 CFR \$430 Subpart B mills (which would include this facility) in a later rulemaking. The 2012 edition of the 40 CFR has reserved the limits for COD at this time. COD is a broad measure of organic content, which includes toxic organic materials that are not readily biodegraded and, hence, are not generally measured by the BOD5 test. Therefore, the Daily Maximum and Monthly Average effluent limitations for COD are NL, and the monitoring frequency is once per month, based on BPJ.

BOD5: The Water Quality Standards at 9 VAC 25-260-20 prohibit the presence of substances in amounts which interfere with designated uses and authorize the control of substances which may interfere with designated uses. The federal ELGs at 40 CFR \$430 Subpart B (Bleached Papergrade Kraft) establish mass-based best practicable control technology (BPT) limitations for BOD5 based on facility product types and quantities. For non-continuous dischargers, the ELGs are stated as an annual average massbased limitation. The monitoring frequency is not specified. The applicable state Water Quality Management (WQM) Plan limits BOD5 to a maximum of 4.4 million pounds per year. Based on BPJ, the annual average BOD5 limitation is being expressed as a monthly average because the facility accumulates its daily discharge in a holding pond and does not discharge for an entire year. BOD Limitations have been calculated in four phases, corresponding to the four phases of production lines of the ST Tissue Manufacturing process. With the TAK Investments, Inc. manufacturing process, concentration limits for BOD will increase during the proposed four manufacturing phases. The new BOD concentration limits will be similar to the limitations at the mill prior to the mill shutdown in 2010. The Phase I Monthly Average BOD5 limitation is being set at 143 mg/l, based on the federal ELGs (see table below). The Daily Maximum BOD5 limitation is being set at 286 mg/l, which is equal to twice the monthly average, based on BPJ, taking into account typical variability experienced by industrial wastewater treatment systems. The **Phase II Monthly Average** BOD5 limitation is being set at 155 mg/l, based on the federal ELGs (see table below). The Daily Maximum BOD5 limitation is being set at 310 mg/l, which is equal to twice the monthly average, based on BPJ, taking into account typical variability experienced by industrial wastewater treatment systems. The Phase III Monthly Average BOD5 limitation is being set at 149 mg/l, based on the federal ELGs (see table below). The Daily Maximum BOD5 limitation is being set at 298 mg/l, which is equal to twice the monthly average, based on BPJ, taking into account typical variability experienced by industrial wastewater treatment systems. The Phase IV Monthly Average BOD5 limitation is being set at 152 mg/l, based on the federal ELGs (see table below). The Daily Maximum BOD5 limitation is being set at 304 mg/l, which is equal to twice the monthly average, based on BPJ, taking into account typical variability experienced by industrial wastewater treatment systems. The monitoring frequency is once per week, based on BPJ, because the facility's 11-billion gallon storage pond (C Pond) significantly dampens potential daily effluent variability. Additionally the Discharge Season Cumulative Maximum BOD5 limitation is being set at 4.4 million pounds, based on the Virginia WQM Plan, with a monitoring frequency of once per month.

Monthly Average BOD5 - Phase I of TAK Investments, Inc. process operation

	BOD5 Limitation based on BPT ELGs at 40 CFR §430							
Product Type	ELG (1b/1000 1b)	Production Rate (Tons/day)	Annual Average BOD5 Limitation (lb/d)	Production Line Effluent Volume (mgd)	BOD5 Limitation (mg/l)			
Market Pulp	4.52	877	7,928.08	10.8	87.96			
Paperboard	3.99 (§430.22)	0	NA	NA	0			
Pulp & Fine Papers (Deinking included in this process)	3.09 (§430.22) Note - 100% of the deinking process under §430.92 is included in the pulp and fine paper production	208	1,285.44	2.8	55.00			
·	Total	BPT Limit - 1	Phase I		142.96			

Monthly Average BOD5 = 143 mg/l (market pulp + fine tissue)

Market Pulp

877(2000) = 1754000/1000 = 1754(4.52) = 7928.08 #/d annual average

7928.08 #/d

8.345 #/gal (10.8mgd) = 87.96 mg/1

Fine Tissue

208(2000 = 416000/1000 = 416(3.09) = 1285.44 #/d annual average

1285.44 #/d

8.345 #/gal (2.8mgd) = 55.00 mg/1

Monthly Maximum BOD5 = 286 mg/l (2 x's the average)

Monthly Average BOD5 - Phase II of TAK Investments, Inc. process operation

	BOD5 Limitation based on BPT ELGs at 40 CFR §430							
Product Type	ELG (1b/1000 1b)	Production Rate (Tons/day)	Annual Average BOD5 Limitation (lb/d)	Production Line Effluent Volume (mgd)	BOD5 Limitation (mg/l)			
Market Pulp	4.52	877	7,928.08	10.8	87.96			
Paperboard	3.99 (§430.22)	0	NA	NA	0			
Pulp & Fine Papers (Deinking included in this process)	3.09 (§430.22) Note - 100% of the deinking process under §430.92 is included in the pulp and fine paper production	416	2,570.88	4.91	67.14			
	Total	BPT Limit - P	hase II		155.10			

Monthly Average BOD5 = 155 mg/l (market pulp + fine tissue)

Market Pulp

877(2000) = 1754000/1000 = 1754(4.52) = 7928.08 #/d annual average

7928.08 #/d

8.345 #/gal (10.8 mgd) = 87.96 mg/l

Fine Tissue

 $\overline{416(2000)}$ = 832000/1000 = 832(3.09) = 2570.88 #/d annual average

2750.88 #/d

8.345 #/gal (4.91mgd) = 67.14 mg/l

Monthly Maximum BOD5 = 310 mg/l (2 x's the average)

Monthly Average BOD5 - Phase III of TAK Investments, Inc. process operation

	BOD5 Limitation based on BPT ELGs at 40 CFR §430							
Product Type	ELG (1b/1000 1b)	Production Rate (Tons/day)	Annual Average BOD5 Limitation (lb/d)	Production Line Effluent Volume (mgd)	BOD5 Limitation (mg/l)			
Market Pulp	4.52	877	7,928.08	10.8	87.96			
Paperboard	3.99 (§430.22)	0	NA	NA	0			
Pulp & Fine Papers (Deinking included in this process)	3.09 (§430.22) Note - 100% of the deinking process under §430.92 is included in the pulp and fine paper production	624	3,856.32	7.54	61.29			
	Total	BPT Limit - Pl	hase III		149.25			

Monthly Average BOD5 = 149 mg/l (market pulp + fine tissue)

 $\frac{\text{Market Pulp}}{877(2000)} = 1754000/1000 = 1754(4.52) = 7928.08 \#/d annual average$

8.345 #/gal (10.8mgd) = 87.96 mg/l

Fine Tissue

624(2000) = 1248000/1000 = 1248(3.09) = 3856.32 #/d annual average

3856.32 #/d

8.345 #/gal (7.54mgd) = 61.29 mg/l

Monthly Maximum BOD5 = 298 mg/l (2 x's the average)

Monthly Average BOD5 - Phase IV of TAK Investments, Inc. process operation

	BOD5 Limitation based on BPT ELGs at 40 CFR §430						
Product Type	ELG (1b/1000 1b)	Production Rate (Tons/day)	Annual Average BOD5 Limitation (lb/d)	Production Line Effluent Volume (mgd)	BOD5 Limitation (mg/l)		
Market Pulp	4.52	877	7,928.08	10.8	87.96		
Paperboard	3.99 (§430.22)	0	NA	NA	0		
Pulp & Fine Papers (Deinking included in this process)	3.09 (\$430.22) Note - 100% of the deinking process under \$430.92 is included in the pulp and fine paper production	832	5,141.76	9.65	63.85		

	Total	BPT Limit - P	hase IV		151.81		

Monthly Average BOD5 = 152 mg/l (market pulp + fine tissue)

Market Pulp

877(2000) = 1754000/1000 = 1754(4.52) = 7928.08 #/d annual average

7928.08 #/d

8.345 #/gal (10.8mgd) = 87.96 mg/l

Fine Tissue

 $\overline{832(2000)} = 1664000/1000 = 1664(3.09) = 5141.76 \#/d annual average$

5141.76 #/d

8.345 #/gal (9.65mgd) = 63.85 mg/1

Monthly Maximum BOD5 = 304 mg/1 (2 x's the average)

TSS: The Water Quality Standards at 9 VAC 25-260-20 prohibit the presence of substances in amounts which interfere with designated uses and authorize the control of substances which may interfere with designated uses. The federal ELGs at 40 CFR \$430 Subpart B (Bleached Papergrade Kraft) establish mass-based best practicable control technology (BPT) limitations for TSS based on facility product types and quantities. For non-continuous dischargers, the ELGs are stated as an annual average massbased limitation. The monitoring frequency is not specified. The applicable state Water Quality Management (WQM) Plan limits TSS to a maximum of 2.88 million pounds per year. Based on BPJ, the annual average TSS limitation is being expressed as a monthly average because the facility accumulates its daily discharge in a holding pond and does not discharge for an entire year. TSS Limitations have been calculated in four phases, corresponding to the four phases of production lines of the ST Tissue manufacturing process. With the TAK Investments, Inc. manufacturing process, concentration limits for TSS will increase will during the proposed four manufacturing phases. The new TSS concentration limits will be similar to the limitations at the mill prior to the mill shutdown in 2010. The Phase I Monthly Average TSS limitation is being set at 292 mg/l, based on the federal ELGs (see table below). The Daily Maximum TSS limitation is being set at 584 mg/l, which is equal to twice the monthly average, based on BPJ, taking into account typical variability experienced by industrial wastewater treatment systems. The $\underline{Phase\ II}$ Monthly Average TSS limitation is being set at 307 mg/l, based on the federal ELGs (see table below). The Daily Maximum TSS limitation is being set at 614 mg/l, which is equal to twice the monthly average, based on BPJ, taking into account typical variability experienced by industrial wastewater treatment systems. The Phase III Monthly Average TSS limitation is being set at 305 mg/l, based on the federal ELGs (see table below). The Daily Maximum TSS limitation is being set at 610 mg/l, which is equal to twice the monthly average, based on BPJ, taking into account typical variability experienced by industrial wastewater treatment systems. The Phase IV Monthly Average TSS limitation is being set at 310 mg/l, based on the federal ELGs (see table below). The Daily Maximum TSS limitation is being set at 620 mg/l, which is equal to twice the monthly average, based on BPJ, taking into account typical variability experienced by industrial wastewater treatment systems. The monitoring frequency is once per week, based on BPJ, because the facility's 11-billion gallon storage pond (C Pond) significantly dampens potential daily effluent variability. Additionally the discharge season cumulative maximum TSS limitation is being set at 2.88 million pounds, based on the Virginia WQM Plan, with a monitoring frequency of once per month.

Monthly Average TSS - Phase I of TAK Investments, Inc. process operation

	TSS Limitation based on BPT ELGs at 40 CFR §430						
Product Type	ELG (1b/1000 1b)	Production Rate (Tons/day)	Annual Average TSS Limitation (lb/d)	Production Line Effluent Volume (mgd)	TSS Limitation (mg/l)		
Market Pulp	9.01	877	15,038.54	10.8	175.34		
Paperboard	7.09 (§430.22)	0	NA	NA	0		
Pulp & Fine Papers (Deinking included in this process)	6.54 (§430.22) Note - 100% of the deinking process under §430.92 is included in the pulp and fine paper production	208	2,720.64	2.8	116.42		
	Total BPT Limit - Phase I						

Monthly Average TSS = 292 mg/l (market pulp + fine tissue)

Market Pulp

 $\overline{877(2000)} = 1754000/1000 = 1754(9.01) = 15803.54 \#/d annual average$

15803.54 #/d

8.345 #/gal (10.8mgd) = 175.34 mg/1

Fine Tissue

 $\overline{208(2000)} = 416000/1000 = 416(6.54) = 2720.64 \#/d annual average$

2720.64 #/d

8.345 #/gal (2.8mgd) = 116.42 mg/l

Monthly Maximum BOD5 = 584 mg/1 (2 x's the average)

Monthly Average TSS - Phase II of TAK Investments, Inc. process operation

	TSS Limitation based on BPT ELGs at 40 CFR §430						
Product Type	ELG (1b/1000 1b)	Production Rate (Tons/day)	Annual Average TSS Limitation (lb/d)	Production Line Effluent Volume (mgd)	TSS Limitation (mg/l)		
Market Pulp	9.01	877	15,038.54	10.8	175.34		
Paperboard	7.09 (§430.22)	0	NA	NA	0		
Pulp & Fine Papers (Deinking included in this process)	6.54 (\$430.22) Note - 100% of the deinking process under \$430.92 is included in the pulp and fine paper production	416	5,441.28	4.91	132.81		
	Total	BPT Limit - P	hase II		307.15		

Monthly Average TSS = 307 mg/l (market pulp + fine tissue)

Market Pulp

877(2000) = 1754000/1000 = 1754(9.01) = 15803.54 #/d annual average

15803.54 #/d

8.345 #/gal (10.8mgd) = 175.34 mg/l

Fine Tissue

 $\overline{416(2000)}$ = 832000/1000 = 832(6.54) = 5441.28 #/d annual average

5441.28 #/d

8.345 #/gal (4.91mgd) = 132.81 mg/l

Monthly Maximum BOD5 = 614 mg/l (2 x's the average)

6-14

Monthly Average TSS - Phase III of TAK Investments, Inc. process operation

	TSS Limitation based on BPT ELGs at 40 CFR §430							
Product Type	ELG (1b/1000 1b)	Production Rate (Tons/day)	Annual Average TSS Limitation (lb/d)	Production Line Effluent Volume (mgd)	TSS Limitation (mg/l)			
Market Pulp	9.01	877	15,038.54	10.8	175.34			
Paperboard	perboard 7.09 (\$430.22)		NA	NA	0			
		624 8,161.92		7.54	129.72			
	Total	BPT Limit - P	hase III		305.06			

Monthly Average TSS = 305 mg/l (market pulp + fine tissue)

 $\frac{\text{Market Pulp}}{877(2000)} = 1754000/1000 = 1754(9.01) = 15803.54 \#/d annual average$

15803.54 #/d

8.345 #/gal (10.8mgd) = 175.34 mg/l

Fine Tissue

624(2000) = 1248000/1000 = 1248(6.54) = 8161.92 #/d annual average

8161.92 #/d

8.345 #/gal (7.54mgd) = 129.72 mg/l

Monthly Maximum BOD5 = 610 mg/l (2 x's the average)

Monthly Average TSS - Phase IV of TAK Investments, Inc. process operation

	TSS Limitation based on BPT ELGs at 40 CFR §430							
Product Type	ELG (1b/1000 1b)	Production Rate (Tons/day)	Annual Average TSS Limitation (lb/d)	Production Line Effluent Volume (mgd)	TSS Limitation (mg/l)			
Market Pulp	9.01	877	15,038.54	10.8	175.34			
Paperboard	7.09 (§430.22)	0	NA	NA	0			
Pulp & Fine Papers (Deinking included in this process)	6.54 (§430.22) Note - 100% of the deinking process under §430.92 is included in the pulp and fine paper production	832	10,882.56	9 . 65	135.14			
		***************************************			310.48			
	Total	BPT Limit - P	hase IV		310.48			

Monthly Average TSS = 310 mg/l (market pulp + fine tissue)

Market Pulp

877(2000) = 1754000/1000 = 1754(9.01) = 15803.54 #/d annual average

15803.54 #/d

8.345 #/gal (10.8mgd) = 175.34 mg/l

Fine Tissue

 $\overline{832(2000)} = 1664000/1000 = 1664(6.54) = 10882.56 \#/d annual average$

10882.56 #/d

8.345 #/gal (9.65 mgd) = 135.14 mg/l

Monthly Maximum BOD5 = 620 mg/l (2 x's the average)

Color: The Water Quality Standards at 9 VAC 25-260-20 prohibit the presence of substances in amounts which interfere with designated uses and authorize the control of substances that produce color. Neither the Virginia Water Quality Standards nor the applicable federal ELGs at 40 CFR §430 contain numerical limitations or monitoring frequencies for color. Therefore, based on BPJ, the Monthly Average and Daily Maximum limitations for color are established as NL, and the monitoring frequency is weekly.

pH: The effluent pH is limited to 6.0-9.0, based on applicable Water Quality Standards. The monitoring frequency is weekly, based on BPJ. Measurement of effluent pH is necessary to confirm proper treatment, characterize the discharge and adequately evaluate its potential impact on receiving waters. The Water Quality Standards at 9 VAC 25-260-50 limit pH in surface waters to the range of 6.0-9.0. The federal ELGs at 40 CFR \$430 limit pH to the range 5.0-9.0 at all times, and the monitoring frequency is not specified.

Total Nitrogen: The Daily Maximum and Monthly Average NL monitoring requirements for Total Nitrogen in the previous permit are being continued, the monitoring frequency is being retained at monthly, based on BPJ, for the following reasons: (1) there is no water quality criterion for total nitrogen in waters other than Chesapeake Bay tributaries; (2) monitoring results during the previous permit term indicate only low levels of total nitrogen; and (3) the permit will continue to limit ammonia-nitrogen, for which a water quality criterion does exist.

Total Phosphorus: The Blackwater River is identified at 9 VAC 25-260-470 as a Nutrient Enriched Water. There is no freshwater water quality criterion for phosphorus. The Policy for Nutrient Enriched Waters at 9 VAC 25-40-30(A) requires a monthly average total phosphorus effluent limitation of 2 mg/l. Based on BPJ, the Daily Maximum limitation is NL to allow monitoring of peak measured values. The weekly monitoring frequency in the previous permit is being retained, based on BPJ. Additionally, based on BPJ, a seasonal maximum limitation of 200,000 pounds* is based on

$$(2\frac{mg}{l})(11,286)(8.34) = 188,250lbs$$

* $(and - rounded = 200,000lbs)$

previous flows and calculated based on a seasonal discharge flow of 11,286 million gallons during the previous permit term (Actual calculated value of 188,300 lbs rounded to 200,000 lbs in previous permit). In order to maintain nutrient loadings to nutrient enriched receiving streams, the limit will not be recalculated based on recent flows.

Ammonia-Nitrogen: All references to ammonia in this section refer to ammonia as N. The Blackwater River at Outfall 001 is identified as a Nutrient Enriched Water. The relevant receiving stream water quality statistics are as follows:

Hardness 48.1 mg/l (90th %ile) pH 7.00 SU (90th %ile) Temp 25.13 ©C (90th %ile)

The need to change the ammonia limit was re-evaluated; see the attached stats.exe using revised WLA and data. The previous limits are being retained, as follows: Monthly Average 2.15~mg/l and Daily Maximum 3.19~mg/l, with the monitoring frequency re-established to once per month; and Seasonal Monthly

6-17

Average 220,000 pounds and Seasonal Maximum 320,000 pounds, with a monitoring frequency of once per month, based on BPJ.

Dioxin (2,3,7,8-TCDD): The Virginia water quality standard for dioxin is 5.1 (10⁻⁸) ug/l (micrograms per liter for the protection of human health, which equals 0.051 pg/l (picogram per liter) (see 9 VAC 25-260-150). The North Carolina human health standard is 0.000005 nanograms per liter, or stated for comparison purposes, 0.005 pg/l. Thus, the North Carolina standard is more restrictive. Because Outfall 001 discharges within one stream mile of the Virginia-North Carolina state line, the North Carolina standard and stream flow value will be used to derive the permit limitations.

Determination of Human Health WLA (WLAh)

WLAh is calculated by the steady state complete mix method using the North Carolina dioxin standard of 0.005 pg/l and the mean annual Chowan River flow of Qs (=1537 mgd) when evaluating carcinogenic materials. The Chowan data is used as this is where the effluent stream enters into NC, it protects NC standard and was agreed upon in the 1994 permit negotiations. Because the North Carolina standard is a "never-to-be-exceeded" standard, the maximum effluent flow rate of 500 mgd indicated by the applicant will be used for Qe. No allowance for any

$$WLAh(pg/1) = \frac{0.005(500+1537)}{500} = \frac{0.020 pg/1}{500}$$

To ensure that a WLAh of 0.020 pg/l is protective of the Virginia Standard. WLAh is calculated using the Virginia Standard, the mean seasonal flow of 702.2 MGD for the Blackwater River at the point of discharge: Since the wasteload allocation is lower using the North Carolina standard, the Virginia Standard is protected.

$$WLAh(pg/1) = \frac{0.051(500+702.2)}{500} = \frac{0.123 pg/1}{}$$

To first derive the appropriate limit the WLA computer model was forced by using a single datum of 99 for the 1994 permit. The model shows that a Monthly Average and Daily Maximum limit of 0.02 ppq are necessary to protect human health. Therefore, the Monthly Average and Daily Maximum limitations for dioxin are set at 0.02 pg/l (ppq) and the QL is set at 10 ppq. A measured value equal to or greater than the QL shall be considered to exceed the limitation.

The Seasonal Maximum mass limitation is 1.9×10^{-6} lb. This value is recalculated for this permit. The Seasonal Maximum mass limitation was derived using the Daily Maximum limitation of 0.02 ppq and the maximum reported seasonal flow of 11,286 million gallons, as follows:

$$(0.02 \text{ pg/l}) (11,286 \text{ MG}) (8.34 \#/g) = (1882.5 \text{ pg/l}) (11,286 \text{ MG}) (8.34 \#/g) = 0.19 \times 10^{-5} \text{lb}$$

The monitoring frequency for dioxin at Outfall 001 is being continued from the previous permit at once per discharge season, with the requirement that the monitoring be performed during the final 14 days of the discharge season, when the facility's C storage pond is nearly empty, retention time is lowest and potential dilution from stormwater is lowest.

Furan (2,3,7,8-TCDF): Neither the Virginia nor the North Carolina water quality standards establish a criterion for furan (2,3,7,8-TCDF). The federal ELGs at 40 CFR \$430.24(a)(1) establish a daily maximum technology-based effluent limit of 31.9 pg/l (ppq) for bleach line effluents, which has been applied at Outfall 103 (see Internal Outfall section above). The previous permit contained a

monthly NL monitoring-only requirement for furan at Outfall 001. DMR data from the previous permit term show Daily Maximum furan concentrations ranging from zero to $\langle QL \rangle$, which are all less than the method quantification level (QL) of 10 ppq (see Attachment 6: DMR data tables). Due to antibacksliding regulation, the effluent limitation for 2,3,7,8-TCDF is being retained as NL.

Based on BPJ, the monitoring frequency for furan at Outfall 001 is being continued at once per discharge season, with the requirement that the monitoring be performed during the final 14 days of the discharge season, when the facility's C storage pond is nearly empty, retention time is lowest and potential dilution from stormwater is lowest. The seasonal mass limitation of NL in the previous permit is also being retained, and the monitoring frequency is being retained at once per discharge season, based on BPJ.

AOX: Previous permits developed AOX limitations based on cumulative data from each of three active bleach lines. At this point in time, the facility only operates one single bleach line (F Bleach Line) as submitted in their VPDES Permit application dated May 18, 2015. FLOW from 2C appl is 2.7 MG

Because the facility is a seasonal discharger and is prohibited from discharging final effluent during specific periods of time, it is classified as a non-continuous discharger under 40 CFR \$430.01(k)(2). The monitoring frequency and effluent limitation for AOX is determined by the particular subsections of 40 CFR \$430.02 and \$430.24, respectively, applicable to the bleach line at various points in time for non-continuous dischargers. The AOX effluent limitations, however, apply at end-of-pipe (Outfall 001). The numeric AOX effluent limitation is applicable at outfall 001. Monitoring frequency was 1/week based on Effluent Guidelines, Effective April 17, 2006, the monitoring frequency was reduced to 1/month, based on BPJ, and allowable under 40 CFR \$430.02.

The point of compliance is end-of-pipe at Outfall 001. The numeric values for the AOX limitations are determined by summing the applicable limitations for AOX for each of the contributing bleach lines. With this reissuance, only the F Bleach Line is in active operation.

The resulting concentration-based annual average AOX limitation is 21 mg/l (21.28 mg/l rounded to 21 mg/l). Based on BPJ, because the discharge is non-continuous and there is no practical method for determining the annual average of this non-continuous discharge, the annual average effluent limitation for AOX is being expressed as a Monthly Average AOX limitation of 21 mg/l. Expression of the Annual Average AOX limitation in mass units is accomplished by calculating the allowable annual mass from the contributing bleach lines (40 CFR \$430.24(b)(4)(i). The resulting mass-based Annual Average AOX limitation of 175,000 lb/year is calculated using the current production of 920 ADTPD and reported flow 2.7 MG (2C appl. data). Based on BPJ, this annual average effluent limitation for AOX is being expressed as a Seasonal Maximum limitation of 175,000 lb/season, because there is no practical method for determining the annual average of this non-continuous discharge.

Annual Average AOX Limitation VATIP Tier 1 (0.26 kg/kkg) non-continuous

 $\frac{0.26 \text{ kg}}{\text{Kkq}} \times \frac{920 \text{ T}}{2700000 \text{gal}} \times \frac{\text{kkg}}{2200 lb} \times \frac{2000 lb}{\text{T}} \times \frac{1000 \text{mg}}{\text{g}} \times \frac{1000 \text{g}}{\text{kg}} \times \frac{\text{gal}}{3.7851} = \frac{239.2}{11.24} = 21.28 \text{ mg/l}$

Daily Maximum AOX Limitation VATIP Tier 1 (0.58 kg/kkg) non-continuous

 $\frac{0.58 \text{ kg}}{\text{Kkg}} \times \frac{920 \text{ T}}{2700000 \text{gal}} \times \frac{\text{kkg}}{22001b} \times \frac{20001b}{\text{T}} \times \frac{1000 \text{mg}}{\text{g}} \times \frac{1000 \text{g}}{\text{kg}} \times \frac{\text{gal}}{3.7851} = \frac{533.6}{11.24} = 47.47 \text{ mg/l}$

Mass Annual Limitation = Seasonal Maximum Limitation

 $\frac{21.28 \text{ mg}}{\text{L}}$ $\frac{(2.7 \text{ MG})}{\text{day}}$ $\frac{(365 \text{ day})}{\text{yr}}$ $\frac{(8.34 \text{ lb})}{\text{gal}}$ = 174,901.8 = 175,000 lb/yr

FORM 2 C - Section III.C INSERT Internal Outfall Information "F' Bleach Line

			Unfinished Pulp Entering Bleach Plant			
Outfall Number	Bleach Line	Bleaching Sequence	Fiber Furnish	Maximum Daily Production (ADTPD)	Long-Term Avg Production (ADTPD)	Long-Term Avg Flow (MGD)
103	F	ODED	SW	1,320	920	2.73
103	F	ODED (w/semi)	SW	TBD	TBD	

ADTPD

Air Dried Tons per Day

SW

Softwood furnish

Semi

Semi-bleached pulp comes off the O2 stage without entering the bleach plant

TBD

Future fluff pulp product to be determined at a later date

Flows are projected estimates.

Production rate as defined at 40 CFR 430.01n

Dissolved metals data were not available for outfall 001; total metals data submitted with the application for reissuance are as follows:

Antimony <5 ug/l

Arsenic <5 ug/l

Cadmium < 0.5 ug/l

Copper <2 ug/l

Lead <5 ug/l

Mercury < 0.2 ug/l

Nickel <5 ug/l

Zinc 17 ug/l

All metals concentrations are below the freshwater acute and chronic numeric water quality criteria, and would not cause a violation of the State's water quality standards at these concentrations. No metals effluent limitations are included in this reissued permit.

No organic compounds were detected above method detection levels using methods 624/625.

Stormwater

6-91

Outfall 002

Outfall 002 is storm water only and drains the north rail yard area to the Blackwater River. Form 2F data indicate no significant levels of pollutants. The outfall is subject to the facility storm water pollution prevention plan requirements, which includes inspection and record keeping requirements. Railcar unloading areas are surrounded by containment curbing to prevent accidental release or contamination of storm water. The discharge of any process wastewater from this outfall is prohibited under part I.A of the permit. Therefore, based on BPJ, no monitoring is being required.

Outfalls 006 and 007

Outfalls 006 and 007 are storm water only and drain mostly unpaved surfaces and railroad bed to Washole Creek. Form 2F data indicate no significant levels of pollutants. The outfalls are subject to the facility storm water pollution prevention plan requirements; which includes inspection and record keeping requirements. Railcars were temporarily staged in these areas, but are not unloaded. No railcars are currently stored in the area, but could be in the future. The outfall pipes are provided with a valve that can be closed in the event of a spill to prevent accidental release or contamination of storm water. Due to the new non-operational status of the plant, there are no chemicals stored in these areas, and these outfalls are being reclassified to no longer require chemical monitoring.

Outfalls 008, 009, 011

Outfalls 008, 009 and 011 are storm water only and drain natural vegetated areas outside the facility solid waste landfill. The outfalls are subject to the facility storm water pollution prevention plan requirements, which include inspection and record keeping requirements. Storm water draining from these areas does not come into contact with materials entering the landfill. Pesticides, herbicides, soil conditioners and fertilizers are not applied in these areas. The discharge of any process wastewater from this outfall is prohibited under part I.A of the permit. Therefore, based on BPJ, no monitoring is being required.

Outfalls 012, 013 and 014

Outfalls 012, 013 and 014 drain areas associated with trailer and construction materials storage. The outfalls are subject to the facility storm water pollution prevention plan requirements, which includes inspection and record keeping requirements. The discharge of any process wastewater from these outfalls is prohibited under part I.A of the permit. Therefore, based on BPJ, no monitoring is being required.

OutfallS 010 and 015

Outfalls 010 and 015 consist of uncontaminated, untreated fresh groundwater used for facility water supply resulting from periodic flushing of the water supply line for maintenance purposes. The discharge of any process wastewater or storm water from these outfalls is prohibited under part I.A of the permit. Because the discharge is uncontaminated and the facility keeps detailed records of its supply water quality for process quality control and other purposes, no monitoring is required.

Mixing Zone Predictions for

International Paper

Effluent Flow = 181 MGD
Stream 7Q10 = 0.72 MGD
Stream 30Q10 = 2 MGD
Stream 1Q10 = 0.25 MGD
Stream slope = 1 ft/ft
Stream width = 200 ft
Bottom scale = 1
Channel scale = 1

Mixing Zone Predictions @ 7Q10

Depth = .1602 ft Length = 386145.82 ft Velocity = 8.7803 ft/sec Residence Time = .509 days

Recommendation:

A complete mix assumption is appropriate for this situation and the entire 7Q10 may be used.

Mixing Zone Predictions @ 30Q10

Depth = .1609 ft Length = 384798.37 ft Velocity = 8.8049 ft/sec Residence Time = .5058 days

Recommendation:

A complete mix assumption is appropriate for this situation and the entire 30Q10 may be used.

Mixing Zone Predictions @ 1Q10

Depth = .1599 ft Length = 386663.89 ft Velocity = 8.7712 ft/sec Residence Time = 12.2454 hours

Recommendation:

A complete mix assumption is appropriate for this situation providing no more than 8.17% of the 1Q10 is used.

8/25/2015 2:45:43 PM

Facility = IP
Chemical = Ammonia
Chronic averaging period = 30
WLAa = 8.4
WLAc = 2.61
Q.L. = 0.2
samples/mo. = 1
samples/wk. = 1

Summary of Statistics:

observations = 11
Expected Value = .631265
Variance = .136519
C.V. = 0.585308
97th percentile daily values = 1.52626
97th percentile 4 day average = 1.03879
97th percentile 30 day average = .758155
< Q.L. = 1
Model used = delta lognormal

No Limit is required for this material

The data are:

0.55 0.28 0.45 0.54 0.99 1.11 0.36 0.39 0.11 0.89 1.08 Current permit limit carried forward. Antibackshiding prohibits limit from being removed.

Analysis of the Union Camp Corp. effluent data for Ammonia The statistics for Ammonia are: Number of values Quantification level Number < quantification = Expected value = 4.507973 Variance **8.72227** C.V. = .6551391 97th percentile 11.60416 Statistics used = lognormal using 90% pH & Tic (Dec - Mar. data only) The WLAs for Ammonia are: Acute WLA = 12.53 Chronic WLA = 2.15 Human Health WLA = 1E+07The limits are based on chronic toxicity and 4 samples/month. Maximum daily limit = 3.194471 Average monthly limit = 2.15 It is recommended that only the maximum daily limit be used. DATA 2.7 4.6 4.8 4.5 1994 Remist Issuance 4.8 NH Data & Limit 4.8 4.9 Calculation. 4.8 4.8 4.9 See 2015 sheet for limit 4.8 B ventication. 4.5 5.1 4.8 4.9 6.4 6.5 5.2

4.7 . 5 . 6 1.3 . 9 1.3 3.8 4.3 4.5 4.5 4.6 4.4 4.3 4.1 4.1 3

FRESHWATER WATER QUALITY CRITERIA / WASTELOAD ALLOCATION ANALYSIS

International Paper Facility Name:

VA0004162 Permit No.:

Blackwater River Receiving Stream:

Version: OWP Guidance Memo 00-2011 (8/24/00)

Stream Information		Stream Flows		Mixing Information		Effluent Information	
Mean Hardness (as CaCO3) =	48.1 mg/L	1Q10 (Annual) =	0.25 MGD	Annual - 1Q10 Mix =	8.17 %	Mean Hardness (as CaCO3) =	108 mg/L
90% Temperature (Annual) =	25.13 deg C	7Q10 (Annual) ≈	0.72 MGD	- 7Q10 Mix =	100 %	90% Temp (Annual) =	5 deg C
90% Temperature (Wet season) =	O geb	30Q10 (Annual) ==	2 MGD	- 30Q10 Mix =	100 %	90% Temp (Wet season) =	O beb
90% Maximum pH =	7 SU	1Q10 (Wet season) ==	0.25 MGD	Wet Season - 1Q10 Mix =	100 %	90% Maximum pH =	ns 8
10% Maximum pH =	ns	30Q10 (Wet season) =	MGD	- 30Q10 Mix =	100 %	10% Maximum pH =	7.16 SU
Tier Designation (1 or 2) ≂	-	3005 =	MGD			Discharge Flow =	181 MGD
Public Water Supply (PWS) Y/N? =	z	Harmonic Mean ==	702.2 MGD			3	
Trout Present Y/N? ==	c						
Early Life Stages Present Y/N? =	*						

Parameter	Background		Water Quality Criteria	y Criteria		-3	Wasteload Allocations	locations		Ar	Antidegradation Baseline	n Baseline		Ant	Antidegradation Allocations	Allocations			Most Limitir	Most Limiting Allocations	
(ng/l unless noted)	Conc.	Acute	Chronic HH (PWS)	(PWS)	Ŧ	Acute	Chronic HF	HH (PWS)	.	Acute	Chronic HI	HH (PWS)	壬	Acute	Chronic HI	HH (PWS)	Ŧ	Acute	Chronic	HH (PWS)	壬
Acenapthene	£,	1	ı	na	9.9E+02	1	1	na 9	9.9E+02	1	1	1	-	ŀ	1		1	,	١.	na	9.9E+02
Acrolein	0	:	;	na	9.3E+00	ı	ı	na 9	9.3E+00	1	ı	. 1	:	:	ı	1	1		1	п	9.3E+00
Acrylonitrile ^C	0	;	1	na	2.5E+00	ı	1	na 1	1.2E+01	ı	ı	1		1	;	;	1	į	1	æ	1.2E+01
Aldrin ^c	0	3.0E+00	ı	B	5.0E-04	3.0E+00	ŧ	na	2.4E-03	ı	1	1	1	1	;	í	ı	3.0E+00	i	ç	2.4E-03
Ammonia-in (mg/l) (Yearly)	0	8.41E+00	2.58E+00	g	1	8,42E+00 2,61E+00	.61E+00	Ba	1	ı	ī	;	i	ı	1	1	1	8.42E+00	2.61E+00	na	ı
Ammonia-iv (mg/i) (High Flow)	0	8,49E+00 2.43E+00	2.43E+00	Б	1	8.50E+00 2.43E+00	43E+00	na	1	ı	ļ	1	1	ı	ı	ı	1	8.50E+00	2.43E+00	a D	1
Anthracene	0	ì	ı	па	4.0E+04	ı	:	na 4	4.0E+04	ı	1	ı	;	;	,	ı	1	:	i	ë	4.0E+04
Antimony	0	1	ı	na	6.4E+02	ı	1	na 6	6.4E+02	;	1	ı	1	ı	ı	ı	;	;	ı	e E	6.4E+02
Arsenic	0	3.4E+02	1.5E+02	na	ı	3.4E+02	1.5E+02	na	1	;	ļ	1	1	ı	ı	1	1	3.4E+02	1.6E+02	E C	
Banum	0	í	1	na	1	1	ţ	В	1	í	;	ı	ı	1	ı	1	1	ı	i	g	ı
Benzene ^c	0	ŀ	ı	na	5.1E+02	i	ı	na 2	2.5E+03	:	1	;	ı	1	ı	ŧ	ı	;	1	Ë	2.6E+03
Benzidine ^c	0	:	;	na	2.0E-03	ì	;		9.8E-03	ı	1	ŧ		ŧ	i	ı	;	:	:	ë	9.8E-03
Benzo (a) anthracene ^c	0	ı	ŀ	na	1.8E-01	ţ	ŧ	na	8.8E-01	ŧ	1	t	1	ı	1	;	ı	;	ı	ğ	8.8E-01
Benzo (b) fluoranthene ^c	0	ı	ŧ	na	1.8E-01	ì	1		8.8E-01	ı	ı	1		1	;	t	;	1	:	e C	8.8E-01
Benzo (k) fluoranthene ^c	0	ı	1	na	1.8E-01	1	ı		8.8E-01	1	;	ı	1	;	1	ı	ı	ı	;	Ë	8.8E-01
Benzo (a) pyrene ^C	0	i	ı	na	1.8E-01	ŧ	1		8.8E-01	1	ı	ı	1	1	ı	ı	!	ı	ı	g	8.8E-01
Bis2-Chloroethyl Ether ^c	0	ŀ	;	na	5.3E+00	ı	1	na 2	2.6E+01	ţ	;	ı	······	1	;	ì	1	ı	:	E.	2.6E+01
Bis2-Chloroisopropyl Ether	0	;	ı	na	6.5E+04	,	;	na 6	6.5E+04	1	1	ı		ı	1	ı	1	ı	ı	Ē	6.5E+04
Bis 2-Ethylhexyl Phthalate ^c	0	ı	i	na	2.2E+01	1	1	na	1.1E+02	ı	1	ı	ı	1	ı	ı	ı	ı	ŧ	e c	1.1E+02
Bromoform ^c	0	ı	ı	na	1.4E+03	i	ı		6.8E+03	;	;	;		;	ı	1	1	ı	ı	n m	6.8E+03
Butylbenzylphthalate	0	1	ŀ	na	1.9E+03	1	ı	na 1	1.9E+03	i	ı	ı		1	ì	ı	ļ	:	ı	Ē	1.9E+03
Cadmium	0	4.3E+00	1.2E+00	na	1	4.3E+00 1	1.2E+00	na	1	į	Į	1		1	;	;	1	4.3E+00	1.2E+00	E	ı
Carbon Tetrachloride ^c	0	;	į	a	1.6E+01	ţ	ı	na 7	7.8E+01	ı	ŀ	;	;	ı	1	í	1	1	ı	ë	7.8E+01
Chlordane ^c	0	2.4E+00	4.3E-03	па	8.1E-03	2.4E+00 4	4.3E-03	na 4	4.0E-02	ł	i	ţ	1	;	ı	;	1	2.4E+00	4.3E-03	БП	4.0E-02
Chloride	0	8.6E+05	2.3E+05	na	1	8.6E+05 2	2.3E+05	na	1	ı	ı	ı	ı	;	;	;	1	8.6E+06	2.3E+05	na	ı
TRC	0	1.9E+01	1.1E+01	a	1	1.9E+01 1	1.1E+01	na	1	1	ı	1	1	ŀ	į	ŧ	I	1.9E+01	1.1E+01	na	ı
Chlorobenzene	0	:	1	na	1.6E+03	1	1	na 1	1.6E+03	!	į	ı		1	1	1	······	;	ı	2	1.6E+03
														***************************************			-				

Parameter	Background		Water Qu	Water Quality Criteria			Wasteload Allo	llocations		4	Antidegradation Baseline	n Baseline		Ant	Antidegradation Allocations	Allocations			Most Limiting Allocations	Allocations	
(ug/l unless noted)	Conc.	Acute	Chronic	HH (PWS)	Ŧ	Acute	Chronic	HH (PWS)	Ŧ	Acute	Chronic H	HH (PWS)	Ŧ	Acute	Chronic F	HH (PWS)	Ŧ	Acute	Chronic	HH (PWS)	HH
Chlorodibromomethane	0	I	;	na	1.3E+02	ı	ł	na	6.3E+02		1	1	ı	ŧ	,	ŧ	1	,	:	па	6.3E+02
Chloroform	0	i	t	na	1.1E+04	ı	1	па	1.1E+04	ı	ŀ	ı	1	;	ł	ı	ı	;	·	ë	1.15+04
2-Chloronaphthalene	0		1	na	1.6E+03	1	ı	na	1.6E+03	;	ł	ı	1	1	ı	ł	ı	;	:	ë	1.6E+03
2-Chlorophenol	0	;	ı	na	1.5E+02	!	ł	na	1.5E+02	ł	1	;	ı	1	1	ı	1	ı	1	an	1.6E+02
Chlorpyrifos	0	8.3E-02	4.1E-02	na	1	8.3E-02	4.1E-02	a	ı	ŧ	ţ	ŧ	1	1	;	1	ı	8.3E-02	4.1E-02	ec	1
Chromium III	0	6.1E+02	7.9E+01	na	ı	6.1E+02	7.9E+01	æ	1	t	•	t		;	ì	ı	ı	6.1E+02	7.9E+01	na	ı
Chromium VI	0	1.6E+01	1.1E+01	na	1	1.6E+01	1.1E+01	na	. 1	:	1	1	1	1	ı	ı	1	1.6E+01	1.1E+01	80	1
Chromium, Total	0	1	ı	1.0E+02	ı	!	ı	na	ı	i	ŀ	ı	1	;	ı	ı	ı	i	ı	e e	ı
Chrysene ^c	0	1	1	na	1.8E-02	!	1	па	8.8E-02	ŧ	į	ŧ	ı	1	į	*	1	ı	:	na 13	8.8E-02
Copper	0	1.4E+01	9.5E+00	na	ŧ	1.4E+01	9.6E+00	na	ı	ı	ı	;	í	ı	i	ı	1	1.4E+01	9.6E+00	ë	ı
Cyanide, Free	0	2.2E+01	5.2E+00	na	1.6E+04	2.2E+01	5.2E+00	na	1.6E+04	ı	ı	í	I	ŧ	ţ	ı	ı	2.2E+01	5.2E+00	E C	1.6E+04
و موم	0	ı	1	na	3.1E-03	1	ı	an	1.5E-02	ı	1	1	1		1	1	1	1	:	e c	1.6E-02
DDE c	0	1	1	na	2.2E-03	1	1	na	1.1E-02	ı	ı	i	I	1	1	1	1	;	;	E C	1.1E-02
DDT ^c	0	1.1E+00	1.0E-03	ë	2.2E-03	1.1E+00	1.0E-03	na	1.1E-02	ŧ	ì	1	1	!	ı	ı	ı	1.15+00	1.0E-03	na	1.1E-02
Demeton	0	1	1.0E-01	na	ı	1	1.0E-01	na	ì	ı	í	ı		1	1	ı	,	ı	1.0E-01	ë	ï
Diazinon	0	1.7E-01	1.7E-01	na	ł	1.7E-01	1.7E-01	na	ı	1	I	ŧ	ł	ı	1	1	ı	1.7E-01	1.7E-01	e C	ı
Dibenz(a,h)anthracene ^c	0	ı	1	a	1.8E-01	1	1	na	8.8E-01	ŧ	1	ı	į	:	í	ı	ı	1	ı	e C	8.8E-01
1,2-Dichlorobenzene	0	ı	1	na	1.3E+03	ı	ŧ	na	1.3E+03	1	;	1	1	ì	ţ	ı	ı	ı	ı	ā	1.3E+03
1,3-Dichforobenzene	0	ı	1	na	9.6E+02	1	ţ	na	9.6E+02	ı	I	1	:	i	ŧ	ŧ	ı	i	ı	na	9.6E+02
1,4-Díchlorobenzene	0	I	;	na	1.9E+02	;	;	na	1.9E+02	ţ	:	1	1	ţ	ì	1	;	:	1	e C	1.9E+02
3,3-Dichlorobenzidine ^c	0	1	1	na	2.8E-01	1	ì	na	1.4E+00	ŀ	ı	ı		i	;	t	1	:	1	8	1.4E+00
Dichlorobromomethane ^c	0	1	1	В	1.7E+02	1	1	na	8.3E+02	ı	ì	ı		l	;	1	1	1	;	na na	8.3E+02
1,2-Dichloroethane ^c	0	ı	1	na	3.7E+02	ı	ı	na	1.8E+03	ı	ı	1		ı	ı	ı	ı	ì	ı	na E	1.8E+03
1,1-Dichloroethylene	0	ı	1	na	7.1E+03	;	1	na	7.1E+03	1	1	ı		ı	ı	1	ı	ı	ı	Ę	7.1E+03
1,2-trans-dichloroethylene	0	;	ı	an	1.0E+04	ł	ŀ	na	1.0E+04	ŧ	1	1	1	1	1	ı	ı	1	ı	na	1.0E+04
2,4-Dichlorophenol	0	ı	1	па	2.9E+02	1	ı	Ba	2.9E+02	i	1	1		ì	ì	ı	ı	;	ı	g	2.9E+02
2,4-Dichlorophenoxy acetic acid (2,4-D)	0	1	t	na	1	ı	ı	na	;	1	t	ı		į	ı	:	ı	ı	1	na	1
1,2-Dichloropropane ^c	0	1	1	na	1.5E+02	;	;	na	7.3E+02	1	1	ı	1	ı	ı	ı	ı	ı	٠	e C	7.3E+02
1,3-Dichloropropene ^c	0	ı	1	na	2.1E+02	1	t	na	1.0E+03	ı	ł	ı	:	ı	ı	f	1	1	1	ë	1.0E+03
Dieldrin ^c	0	2.4E-01	5.6E-02	na	5.4E-04	2.4E-01	5.6E-02	na	2.6E-03	ı	ı	1	1	ı	ı	ı	1	2.4E-01	5.6E-02	na	2.6E-03
Diethyl Phthalate		1	1	na	4.4E+04	1	1	na	4.4E+04	1	1	1	1	t	1	1	1	ı	ı	æ	4.4E+04
2,4-Dimethylphenol	0	1	ī	na	8.5E+02	1	1	na	8.5E+02	1	1	1	1	1	1	ı	ı	1	ı	Ē	8.6E+02
Dimethyl Phthalate	0	ı	ł	na	1.1E+06	!	1	na	1.1E+06	ı	:	1	ı	ī	t	ţ	ı	ı	:	E	1.1E+06
Di-n-Butyl Phthalate	0	ì	1	na	4.5E+03	1	ŧ	na	4.5E+03	į	ł	ı	ŀ	ı	1	1	1	ı	:	e E	4.5E+03
2,4 Dinitrophenol	0	ı	1	na	5.3E+03	!	1	na	5.3E+03	l	ı	ı	;	ı	1	ı	ı	ı	ı	E	5.3E+03
2-Methyl-4,6-Dinitrophenol	0	ı	1	g	2.8E+02	1	ì	na	2.8E+02	ı	ļ	ı	·	1	ı	1	ı	ı	1	ā	2.8E+02
2,4-Dinitrotoluene	0	ı	ı	na	3.4E+01	ı	ı	na	1.7E+02	1	1	;	1	1	1	:	1	ı	1	ac	1.7E+02
tetrachlorodibenzo-p-dioxin	0	1	1	na	5.1E-08	1	1	na	5.1E-08	ı	ŀ	i	1	ı	ı	ı	ţ	ı	:	E E	6.1E-08
1,2-Diphenylhydrazíne ^c	0	ı	ı	na	2.0E+00	;	ï	ВП	9.8E+00	1	1	ı	1	1	;	. 1	ı	1	ı	e C	9.8E+00
Alpha-Endosulfan	0	2.2E-01	5.6E-02	na	8.9E+01	2.2E-01	5.6E-02	na	8.9E+01	ı	ł	;		ı	ı	ţ	ı	2.2E-01	5.6E-02	ВĽ	8.9E+01
Beta-Endosulfan	0	2.2E-01	5.6E-02	na	8.9E+01	2.2E-01	5.6E-02	na	8.9E+01	ŀ	ı	ı	;	1	1	1	;	2.2E-01	5.6E-02	e c	8.9E+01
Alpha + Beta Endosulfan	0	2.2E-01	5.6E-02	;	1	2.2E-01	5.6E-02	ı	1	1	t	ı	1	i		ı	ı	2.2E-01	6.6E-02	:	ı
Endosulfan Sulfate	0	1	1	na	8.9E+01	1	;	na	8.9E+01	ı	1	ı	1	ł	t	1	1	ı	ı	8	8.9E+01
Endrin	0	8.6E-02	3.6E-02	na	6.0E-02	8.6E-02	3.6E-02	e u	6.0E-02	ł	ı	1	1	1	;	ı	1	8.6E-02	3.6E-02	a	6.0E-02
Endrin Aldehyde		1	*	na	3.0E-01	4	1	na	3.0E-01	1	*	1	-	1	1	***	-		-	na	3.0E-01

IP MSTRANTI (Version 2b) 2-22-12.xlsx - Freshwater WLAs

Parameter	Background		Water Q	Water Quality Criteria			Wasteload Allo	Allocations		∢	Antidegradation Baseline	n Baseline	_	Antic	Antidegradation Allocations	llocations		N	Most Limiting Allocations	Allocations	
(ng/l unless noted)	Conc.	Acute	Chronic	Chronic HH (PWS)		Acute	Chronic HH	H (PWS)	Ŧ	Acute	Chronic HH	HH (PWS)	Ŧ	Acute (Chronic HH	HH (PWS)	Ŧ	Acute	Chronic H	HH (PWS)	HH
Ethylbenzene	0	1	1	na	2.1E+03	!	ţ	e B	2.1E+03	ŀ	:	ı		ı	1	1	ı	•	1	na	2.1E+03
Fluoranthene	0	!	}	na	1.4E+02	ı	ł	na	1.4E+02	t	ı	ı	;	ı	ŧ	1		1	ı	ā	1.4E+02
Fluorene	0	1	I	na	5.3E+03	ı	ŧ	na	5.3E+03	ŧ	ï	i	I	1	•	,	1	;	ı	na	5.3E+03
Foaming Agents	0	1	1	na	ı	1	1	na	1	ì	ì	ı	1	ŧ	1	ı	1		;	na	1
Guthion	0	1	1.0E-02	2 na	ı	1	1.0E-02	Па	ı	1	ì	ŧ	1	1	ı	ı		1	1.0E-02	Ē	ı
Heptachlor ^c	0	5.2E-01	3.8E-03	3 na	7.9E-04	5.2E-01	3.8E-03	na	3.9E-03	1	ı	i	1	ı	1	ı	1	6.2E-01	3.8E-03	ë	3.9E-03
Heptachlor Epoxide ^c	0	5.2E-01	3.8E-03	3 na	3.9E-04	5.2E-01	3.8E-03	e u	1.9E-03	ı	ı	ì	ı	t	i	1		6.2E-01	3.8E-03	E E	1.9E-03
Hexachlorobenzene ^c	0	í	;	eu	2.9E-03	f	i	na	1.4E-02	;	1	1	I	1	;	1	1	ı	ı	na e	1.4E-02
Hexachlorobutadiene ^c	0	1	1	na	1.8E+02	1	ı	na	8.8E+02	ţ	1	t		ı	1	;	1	ŧ	1	e C	8.8E+02
Hexachlorocyclohexane Alpha-BHC ^c	0	:	1	na	4.9E-02	ı	ſ	B	2.4E-01	i	ŧ	į	1	ŀ	}	;	1	į	1	ĕ	2.4E-01
Hexachlorocyclohexane				;	ŗ			;	i i								······································				
Deta-Drice Hexachlorocyclobexane	>	1	}	e.	1./5-01	1	ı	na e	8.3E-01	ı	ì	ţ	1	Į	ı	1	1	ı	:	Ē	8.3E-01
Gamma-BHC ^c (Lindane)	0	9.5E-01	a	na	1.8E+00	9.5E-01	1	na	8.8E+00	ı	;	ı		ı	i	1	1	9.5E-01		na	8.8E+00
Hexachlorocyclopentadiene	0	ı	1	na	1.1E+03	1	ţ	na	1.1E+03	;	1	ı		1	ı	,		ı	1	na	1.1E+03
Hexachtoroethane ^c	0	;	1	Па	3.35+01	1	;	na	1.6E+02	1	ī	ì	·····	;	ı	ŧ	1	:	ı	na	1.6E+02
Hydrogen Sulfide	0	1	2.0E+00	0 na	1	!	2.0E+00	na	1	1	ı			ı	ı	1	1		2.0E+00	ë	
Indeno (1,2,3-cd) pyrene ^c	0	;	1	na	1.8E-01	ı	ı	na	8.8E-01	1	1	1	1	1	t	ı	1		1	na	8.8E-01
lron	0	ı	1	na	1	1	1	na	ı	:	1	1	1	ı	1	ł	I	1	;	n a	i
Isophorone ^C	0	ı	ı	па	9.6E+03	1	ı	na	4.7E+04	1	;	,	 I	1	1	1		ı		na	4.7E+04
Kepone	0	ı	0.0E+00	o na	ł	1	0.0E+00	na	1	ı	ı	ı	:	1	1	1	1		0.0E+00	กล	1
Lead	0	1.3E+02	1.5E+01	1 na	ŧ	1.3E+02	1.5E+01	na	ı	:	t	ì	1	i	1	1	1	1.3E+02	1.5E+01	na	I
Malathion	0	ı	1.0E-01	ı na	;	;	1.0E-01	na	:	ŧ	ı	ı		1	ţ	:	ŀ	-1	1.0E-01	Ē	1
Manganese	0	ı	1	na	ı	1	1	ВП	·····	ï	i	í	;	ŧ	1	1	1	1	1	na	;
Mercury	0	1.4E+00	7.7E-01	:	;	1.4E+00	7.7E-01	:	;	:	ŧ	;	1	ı	ı	1	1	1.4E+00	7.7E-01	:	;
Methyl Bromide	0	1	1	na	1.5E+03	1	1	na	1.5E+03	ı	ı	i	ı	ì	;	ş	1	1	ı	na	1.5E+03
Methylene Chloride ^c	0	ı	1	eu	5.9E+03	ł	1	па	2.9E+04	i	1	ı		1	1	;	1	ı		na	2.9E+04
Methoxychlor	0	1	3.0E-02	; na	ı	ı	3.0E-02	na	1	1	1	1	1	1	ł	ı	·	ı	3.0E-02	ac	1
Mirex	0	1	0.0E+00	na O	1	1	0.0E+00	na	ı	ı	ŀ	ı	;	ı	ı	;	1	1	0.0E+00	au	1
Nickel	0	1.9E+02	2.2E+01	1 na	4.6E+03	1.9E+02	2.2E+01	na	4.6E+03	ł	ł	;	1	:	1	·	1	1.9E+02	2.2E+01	na na	4.6E+03
Nitrate (as N)	0	1	:	an	:	1	;	na	1	1	1	1		ı	;	ı	:	:	;	Ë	1
Nitrobenzene	0	1	1	a	6.9E+02	1	;	na	6.9E+02	I	ŧ	t	1	;	1	ŀ	1	;	ı	er.	6.9E+02
N-Nitrosodimethylamine ^C	0	ı	ı	a	3.0E+01	ı	;	na	1.5E+02	ı	1	1	1	ı	ı	ı	1	:	1	æ	1.6E+02
N-Nitrosodiphenylamine	0	1	1	na	6.0E+01	1	1	Па	2.9E+02	ı	ŀ	ŀ	ı	1	ŧ	ı	1	ı	;	œ.	2.9E+02
N-Nitrosodi-n-propylamine	0	1	1	na	5.1E+00	ı	1	na	2.5E+01	ţ	ł	;	ı	ı	;	ı		:	;	na na	2.6E+01
Nonylphenol	0	2.8E+01	6.6E+00	1	i	2.8E+01	6.6E+00	na	ı	,	ı	1		1	ı	;	-	2.8E+01	6.6E+00	na	;
Parathion	0	6.5E-02	1.3E-02	na	1	6.5E-02	1.3E-02	na	ı	ì	į	ŀ	;	ŀ	;	ı	-	6.5E-02	1.3E-02	Ē	1
PCB Total ^c	0	ì	1.4E-02	na	6.4E-04	1	1.4E-02	na	3.1E-03	;	1	1	1	1	1	ı	ì	1	1.4E-02	e c	3.1E-03
Pentachlorophenol ^C	0	4.1E-01	6.6E-02	na	3,05+01	4.1E-01	6.6E-02	na	1.5E+02	1	ı	1		ı	ı	1	1	4.1E-01	6.6E-02	na	1.5E+02
Phenol	0	3	1	na	8.6E+05	ı	ı	na na	8.6E+05	ī	;	ı		:	i	1	1	,	ı	na	8.6E+05
Pyrene	0	1	ı	na	4.0E+03	1	ŀ	na	4.0E+03	ı	1	:	1		ì	1	t	1	ı	пa	4.0E+03
Radionuclides Gross Alpha Activity	0	ī	İ	na	ı	;	ı	na	1	ı	;	ı		;	ı	í	1	ı	ı	na a	
(pCi/L)	0	1	ı	ë	1	ı	,	na	1	1	ŀ	ı	1	ı	;	*		;	ı	g E	1
Beta and Photon Activity (mrem/yr)	0	ı	1	e	1	1	1	eu	1	1	ı	ı		1	,	1	1	i	:	8	
Radium 226 + 228 (pCi/L)	0	ı	:	e C	1	,	;	: e		1	1	1		1	;	;				f 6	 I 1
Uranium (ug/l)	. 0	,	1	2	ı	,	1			1	ŀ	1		1	1	1		! ;			
The state of the s								2					1					:		ä	

Parameter	Background		Water Qua	Water Quality Criteria			Wasteload Allocations	Allocations		ď	ntidegradat	Antidegradation Baseline		Ant	idegradatior	Antidegradation Allocations			Wost Limitin	Most Limiting Allocations	
(pejou ssejun l/gn)	Conc.	Acute	Chronic	Chronic HH (PWS)	王	Acute	Chronic	HH (PWS)	Ŧ	Acute	Chronic	HH (PWS)	Ŧ	Acute	Chronic	HH (PWS)	壬	Acute	Chronic	HH (PWS)	Ŧ
Selenium, Total Recoverable	0	2.0E+01	5.0E+00	na	4.2E+03	2.0E+01	5.0E+00	na	4.2E+03	1	1	1	1	;	,	1	t	2.0E+01	5.0E+00	Ē	4.2E+03
Silver	0	3.9E+00	1	na	1	3.9E+00	ţ	na	ı	1	i	ł	1		í	ı	1	3.9E+00	ı	e C	ı
Sulfate	0	1	f	na	i	1	:	na	1	ţ	ŧ	ì	i	ş	;	ï	ı	1	í	na	ı
1,1,2,2-Tetrachloroethane ^c	0	1	:	na	4.0E+01	ï	ı	na	2.0E+02	1	i	ı	ı	ı	ı	i	1	ı	1	Ë	2.0E+02
Tetrachtoroethylene ^c	0	ŧ	;	na	3.3E+01	1	ı	na	1.6E+02	i	t	ı	1	ł	!	ı	ı	ŧ	ı	na	1.6E+02
Thallium	0	1	;	<u> 1</u>	4.7E-01	1	ı	na	4:7E-01	ı	ŧ	1	1	i	ı	ſ	1	1	:	na	4.7E-01
Toluene	0	1	ŧ	e L	6.0E+03	1	ı	na	6.0E+03	ı	ı	;	1	ŧ	ı	1	,	ı	ı	ë	6.0E+03
Total dissolved solids	0	1	ì	e L	ì	,	ı	па	;	í	ı	1	1	i	;	ŧ	ı	:	ŧ	e C	;
Toxaphene ^c	0	7.3E-01	2.0€-04	a	2.8E-03	7.3E-01	2.0E-04	ВП	1.4E-02	t	i	į	ı	ţ	1	1	!	7.3E-01	2.0E-04	па	1.4E-02
Tributyltin	0	4.6E-01	7.2E-02	eu	ı	4.6E-01	7.2E-02	na	ı	ŧ	i	,	i	1	ì	ì	ì	4.6E-01	7.2E-02	Ğ	ı
1,2,4-Trichlorobenzene	0	1	ı	na	7.0E+01	i	ı	na	7.0E+01	t	ı	;	1	ł	;	ı	ı	:	ı	g	7.0E+01
1,1,2-Trichloroethane ^c	0	ı	1	na	1.6E+02	1	1	па	7.8E+02	ı	ı	;	;	1	}	ı	1	ı	ı	ë	7.8E+02
Trichloroethylene ^c	0	1	ı	na	3.0E+02	i	. 1	па	1.5E+03	1	ı	ı	1	;	ì	1	;	;	;	Ē	1.6E+03
2,4,6-Trichlorophenol ^c	0	ı	ı	a	2.4E+01	ı	i	na	1.2E+02	ı	1	1	1	:	ŧ	ŧ	1	ı	;	cg C	1.2E+02
2-(2,4,5-Trichlorophenoxy) propionic acid (Silvex)	0	ı	1	ВП	ı	:	ı	na	ī	;	1	ı	1	ı	ı	ŧ	1	1	:	na L	t
Vinyl Chloride ^C	0	I	ı	na	2.4E+01	I,	:	B	1.2E+02	ł	ì	ŧ	1	ŧ	1	ı	1	1	ı	ç	1.2E+02
Zinc	0	1.3E+02	1.3E+02	na	2.6E+04	1.3E+02 1.3E+02	1.3E+02	na	2.6E+04	1	ţ	t	ı	ł	ı	1	ı	1.3E+02	1.3E+02	e C	2.6E+04

		:
		1,000
		0,00
		the second secon
		, accidentation
ŝ		The constant
z	1	•

- All concentrations expressed as micrograms/liter (ug/l), unless noted otherwise
- 2. Discharge flow is highest monthly average or Form 2C maximum for Industries and design flow for Municipals
- Metals measured as Dissolved, unless specified otherwise
- "C" indicates a carcinogenic parameter
- Regular WLAs are mass balances (minus background concentration) using the % of stream flow entered above under Mixing Information.
 Antidegradation WLAs are based upon a complete mix.
- Antideg. Baseline = (0.25(WQC background conc.) + background conc.) for acute and chronic
- = (0.1(WQC background conc.) + background conc.) for human health
- 7. WLAs established at the follor

or redictionalists and	w equal to 1 and 100% mix.
2 0000 0000	- 1), effluent flor
	to (mixing ratio
c Villiandina, 1	am flow equal
	del set the stre
o ioi Acute, oo	tios from a mod
edin nows.	apply míxing ra
the Schwoller St	ircinogens. To
	ic Mean for Ca
1	armoni

Metai	Target Value (SSTV)	Note: do not use QL's lower than the
Antimony	6.4E+02	minimum QL's provided in agency
Arsenic	9.0E+01	guidance
Barium	Bu	
Cadmium	7.2E-01	
Chromium III	4.7E+01	
Chromium VI	6.4E+00	
Copper	5.8E+00	
Iron	па	
Lead	9.05+00	
Manganese	ē	
Mercury	4.6E-01	
Nickel	1,3E+01	
Selenium	3.0E+00	
Silver	1.6E+00	
Zinc	5.0E+01	

U-ND

Ettlunt Hardness is an average from 2015 toxicity Sample dote. pH is from dote Submitted by the facility on 3/24/15.

Mix of 8.1790
Calculated Woing Max
Flow from application
see otherhood.

Implementation is relatively simple and permit limits should be calculated according to the following protocol:

Obtain the harmonic mean stream flow:

Obtain the design flow for the effluent

Apply a mass balance equation to calculate the allowable effluent concentration:

$$WLA = \frac{Cr(Qd + Q_{hm})}{Qd}$$

Where: LA = wasteload allocation (concentration)

Qd = effluent flow

 $Q_{hm} = stream flow (Harmonic mean)$

Cr = Human health criteria from the standards

Note that in a single discharge situation the WLA will be equal to the permit limit. However, where multiple discharges impact the same stream section the total allowable load must be divided among the discharges.

Note: if the stream background concentration is not equal to zero the central office should be contacted for assistance with the proper calculations.

Note: the statistical program WLA.EXE will no longer be used to estimate a reasonable potential for the human health criteria.

Non-Carcinogens

The human health standards for non-carcinogens are based on a shorter exposure time than that for the carcinogens. There is no specified exposure time in the standards but a consensus of agency opinion is that 30 days is the appropriate period over which to consider these criteria. There is also no recurrence interval mentioned but again an agency consensus indicates that 5 years is appropriate.

What this basically says is that if the highest 30 day average concentration that a person is exposed to is equal to the criteria and they are only exposed once every 5 years then no toxic effects to humans should result.

Implementation:

Implementation is relatively simple and permit limits should be calculated according to the following protocol:

Obtain the 30Q5 stream flow:

Obtain the design flow for the effluent

Apply a mass balance equation to calculate the allowable effluent concentration:

Most current guidance

	VA	Surface	e Water	Criteria	1 - Diox	10
2,4 Dinitrotoluene (μg/l) 121142 Known or suspected carcinogen; human health criteria at risk level 10-5					1.1	34
Dioxin 2, 3, 7, 8-tetrachlorodibenzo- p-dioxin (µg/l) 1746016					5.0 E-8	5.1 E-8
1,2-Diphenylhydrazine (µg/l) 122667 Known or suspected carcinogen; human health criteria at risk level 10-5					0.36	2.0
Dissolved Oxygen (µg/l) (See)						
Alpha-Endosulfan (µg/l) 959988 Total concentration alpha and beta- endosulfan shall not exceed aquatic life criteria.	0.22	0.056	0.034	0.0087	62	89

north caralina HBS

Disclaimer: This table is intended to provide summary information only. It does not substitute for any written regulation, nor is it a regulation itself.

May 1, 2007

Pollutant CAS # Freshwater Saltwater Water Supply (HH) ¹ (Tr) (Tr)	ife Saltwater ife Aquatic Life ss ugil (unless noted) 0.003	Water Sunnly				Swamp		Саг
al Indicators see enterococcus and facal coliform a	ug/l (unless noted) 0.003	(ws)	Human Health (HH)²	Trout Waters (Tr)	High Quality Waters (HQW)	Waters (Sw)	Synonyms & Other Info	cinogen
al Indicators see enterococcus and facal coliform e 7440-39-3 Indicators see enterococcus and facal coliform 7440-41-7 In 7440-41-7 In 7440-41-7 In 7440-41-7 In 8 7440-41-7 In 9 7440-41-7 In 9 7440-41-9 In 9 7782-50-5 In 9 10 10 10 10 10 10 10 10 10 10 10 10 10		ug/l (unless noted)	ug/l (unless noted) ug/l (unless noted)	ug/f (unless noted)	ug/l (unless noted)			
I Indicators al Indicators al Indicators and fecal coliform and fecal coliform T1-43-2 T440-41-7 m T440-43-9 Tetrachloride 56-23-5 For T4-9 ated Benzenes ated Phenols hyll -a, corrected um T440-50-8 e (TRC) T782-50-5 ated Phenols hyll -a, corrected um	50	0.05 ng/L	0.05 ng/L					>
al Indicators see enterococcus and fecal coliform e 71-43-2 mm 7440-41-7 mm 7440-43-9 Tetrachloride 56-23-5 me ETRC) 7782-50-5 etTRC) 7782-50-5 ated Benzenes 7740-50-8 mm 7440-50-8 ettrachloride 67-782-50-5 ettrachloride 7782-50-5 ettrachloride 7		10	10	See Spari				>
Indicators see enterococcus and fecal coliform 71.43-2 7440-41-7 7440-43-9 etrachloride 56-23-5 e 57-74-9 (TRC) 7782-50-5 ed Benzenes ed Phenois m 7440-50-8		1.0 mg/L			erug wê ware san			-
rt 41-43-2 1								₹
etrachloride 56-23-5 e		1.19	51	Žincos)	188			۸
etrachloride 56-23-5 e 57-74-9 (TRC) 7782-50-5 ed Benzenes ed Phenols yll -a, corrected n n 7440-50-8								=
etrachloride 56-23-5 e 157-74-9 (TRC) 16887-00-6 ed Benzenes ed Phenols yll -a, corrected n 7440-50-8	5 (N)			0.4 (N)	1413			=
e 57-74-9 (TRC) 16887-00-6 (TRC) 7782-50-5 ed Benzenes ed Phenols yll -a, corrected 7440-50-8		0.254	1.6	Sec _e nce.			Benzinoform; Carbon Chloride	5
(TRC) 7782-50-5 ed Benzenes ed Phenols yll -a, corrected n 7440-50-8 57-12-5	0.004	0.8 ng/L	0.8 ng/L	***************************************				>
(TRC) 7782-50-5 ed Banzenes ed Phenols yll -a, corrected n 7440-50-8 57-12-5	(AL)	250 mg/L			433			=
ed Benzenes ed Phenols yil -a, corrected n 7440-50-8 57-12-5								ے
ed Phenols yll-a, corrected n 7440-50-8 57-12-5		488		Wang guna	S200003			>
Mina, corrected n 7440-50-8 57-12-5		1.0 (N)						≨
7440-50-8 57-12-5	40(N)			15(N)				₹
7440-50-8	20							₹
57-12-5	3 (AL)							.
	-			244	A. C. S.			=
D, 2,4- 94-75-7		100		. a. N Tg.			2,4-Dichlorophenoxy acetic acid	-
DDT, 4,4*- 50-29-3 0.001	0.001	0.2 ng/L	0.2 ng/L				4,4-Dichlorodiphenylirichloroethane	y
Demeton 8065-48-3 0.1	0.1				nia ŝ			=
Dieldrin 60-57-1 0.002	0.002	0.05 ng/L	0.05 ng/L	*****				2
Dioxin (2,3,7,8-TCDD) 1746-01-6		0,000005 ng/L	0.0000005 ng/L	ent, at the constitute			2,3,7,8-Tetrachlorodibenzo-p-dioxin	>
Dissolved Gases 110% sat (N)	(N) 110% sat (N)							₹

*

puntal from yeals

§430.24

40 CFR Ch. I (7-1-12 Edition)

achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT).

(a) Except as provided in paragraph (b) of this section-

(1) The following effluent limitations apply with respect to each fiber line that does not use an exclusively TCF bleaching process, as disclosed by the discharger in its NPDES permit application under 40 CFR 122.21(g)(3) and certified under 40 CFR 122.22:

SUBPART B

	BAT effluent limi	tations
Poliutant or pollutant property	Maximum for any 1 day	Monthly average
TCDD	 <ml<sup>a</ml<sup>	(b)
TCDF	 31.9°	(b)
Chloroform		4.14 (d)
Trichlorosyringol	 <ml<sup>a</ml<sup>	(b)
3,4,5-trichlorocatechol	 <mla< td=""><td>(b)</td></mla<>	(b)
3,4,6-trichlorocatechol		(Þ)
3,4,5-trichloroguaiacol	 <ml<sup>a</ml<sup>	(b)
3,4,6-trichloroguaiacol		(4)
4,5,6-trichloroguaiacol	 <ml<sup>a</ml<sup>	(6)
2,4,5-trichlorophenol	 <ml<sup>a</ml<sup>	(b)
2,4,6-trichlorophenol		(b)
Tetrachlorocatechol	 <ml<sup>a</ml<sup>	(4)
Tetrachloroguaiacol		(6)
2,3,4,6-tetrachlorophenol		(6)
Pentachlorophenol	 <ml<sup>a</ml<sup>	(b)
	Continuous dischargers	Non-contin-

uous dis-Maximum for any 1 day (kg/kkg) Monthly average (kg/kkg) Annual average (kg/ kkg) 0.512 0.951 0.623 COD

a"<ML" means less than the minimum level specified in § 430.01(i) for the particular pollutant.

b This regulation does not specify this type of limitation for this pollutant; however, permitting authorities may do so as appro-

Priate.
Picograms per liter.
Grams per 1,000 kilograms (g/kkg).
[Reserved]

(2) The following effluent limitations apply with respect to each fiber line that uses exclusively TCF bleaching processes, as disclosed by the discharger in its NPDES permit application under 40 CFR 122.21(g)(3) and certified under 40 CFR 122.22:

SUBPART B

		BAT effluent limitati	ons (TCF)	
Pollutant or pollutant property	Continuous	dischargers	Non-continuous di	schargers
	Maximum for any 1 day	Monthly average	Maximum for any 1 day	Annual aver- age
	ı	kg/kkg (or pounds per 1,0	000 lb) of product	
AOX	<ml <sup="">a (°)</ml>	(c)	<ml**< td=""><td>(c)</td></ml**<>	(c)

a"<ML" means less than the minimum level specified in § 430.01(i) for the particular pollutant.

b This regulation does not specify this type of limitation for this pollutant; however, permitting authorities may do so as appropriate.

- 430.15 New source performance standards (NSPS).
- 430.16 Pretreatment standards for existing sources (PSES).
- 430.17 Pretreatment standards for new sources (PSNS).

Subpart B—Bleached Papergrade Kraft and Soda Subcategory

- 430.20 Applicability; description of the bleached papergrade kraft and soda subcategory.
- 430.21 Specialized definitions.
- 430.22 Effluent limitations representing the degree of effluent reduction attainable by the application of best practicable control technology currently available (RPT)
- 430.23 Effluent limitations representing the degree of effluent reduction attainable by the best conventional pollutant control technology (BCT).
- 430.24 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT)
- nology economically achievable (BAT).
 430.25 New source performance standards (NSPS).
- 430.26 Pretreatment standards for existing sources (PSES).
- 430.27 Pretreatment standards for new sources (PSNS).
- 430.28 Best management practices (BMPs).

Subpart C-Unbleached Kraft Subcategory

- 430.30 Applicability; description of the unbleached kraft subcategory.
- 430.31 Specialized definitions.
- 430.32 Effluent limitations representing the degree of effluent reduction attainable by the application of best practicable control technology currently available (BPT).
- 430.33 Effluent limitations representing the degree of effluent reduction attainable by the best conventional pollutant control technology (BCT).
- 430.34 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT).
- 430.35 New source performance standards (NSPS).
- 430.36 Pretreatment standards for existing (PSES).
- 430.37 Pretreatment standards for new sources (PSNS).

Subpart D—Dissolving Sulfite Subcategory

- 430.40 Applicability; description of the dis-
- solving sulfite subcategory. 430.41 Specialized definitions.
- 430.42 Effluent limitations representing the degree of effluent reduction attainable

Pt. 430

- by the application of best practicable control technology currently available (BPT).
- 430.43 Effluent limitations representing the degree of effluent reduction attainable by the best conventional pollutant control technology (BCT).
- 430.44 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT).
- 430.45 New source performance standards (NSPS).
- 430.46 Pretreatment standards for existing sources (PSES).
- 430.47 Pretreatment standards for new sources (PSNS).

Subpart E—Papergrade Sulfite Subcategory

- 430.50 Applicability; description of the papergrade sulfite subcategory.
- 430.51 Specialized definitions.
- 430.52 Effluent limitations representing the degree of effluent reduction attainable by the application of best practicable control technology currently available (BPT).
- 430.53 Effluent limitations representing the degree of effluent reduction attainable by the best conventional pollutant control technology (BCT).
- 430.54 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT).
- 430.55 New source performance standards (NSPS).
- 430.56 Pretreatment standards for existing sources (PSES).
- 430.57 Pretreatment standards for new sources (PSNS).
- 430.58 Best management practices (BMPs).

Subpart F-Semi-Chemical Subcategory

- 430.60 Applicability; description of the semi-chemical subcategory.
- 430.61 Specialized definitions.
- 430.62 Effluent limitations representing the degree of effluent reduction attainable by the application of best practicable control technology currently available (BPT).
- 430.63 Effluent limitations representing the degree of effluent reduction attainable by the best conventional pollutant control technology (BCT).
- 430.64 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT).
- 430.65 New source performance standards (NSPS).
- 430.66 Pretreatment standards for existing sources (PSES).

§ 430.20

40 CFR Ch. I (7-1-12 Edition)

standards for new sources (PSNS) if it uses chlorophenolic-containing biocides. Permittees not using chlorophenolic-containing biocides

must certify to the permit-issuing authority that they are not using these biocides:

SUBPART A

	Maximum for any 1 day		
Pollutant or pollutant property	Milligrams/liter (mg/l)	Kg/kkg (or pounds per 1,000 lb) of product ^a	
Pentachlorophenol Trichlorophenol y = wastewater discharged in kgal per ton of product.	(0.012)(50.7)/y	0.0025 0.019	

^aThe following equivalent mass limitations are provided as guidance in cases when POTWs find it necessary to impose mass effluent limitations.

Subpart B—Bleached Papergrade Kraft and Soda Subcategory

§ 430.20 Applicability; description of the bleached papergrade kraft and soda subcategory.

The provisions of this subpart apply to discharges resulting from: The production of market pulp at bleached kraft mills; the integrated production of paperboard, coarse paper, and tissue paper at bleached kraft mills; the integrated production of pulp and fine papers at bleached kraft mills; and the integrated production of pulp and paper at soda mills.

§430.21 Specialized definitions.

- (a) The general definitions, abbreviations, and methods of analysis set forth in 40 CFR part 401 and §430.01 of this part apply to this subpart.
- (b) Baseline BAT limitations or NSPS means the BAT limitations specified in §430.24(a) (1) or (2), as applicable, and the NSPS specified in §430.25(b) (1) or (2), as applicable, that apply to any direct discharger that is not "enrolled" in the "Voluntary Advanced Technology Incentives Program."
- (e) Enroll means to notify the permitting authority that a mill intends to participate in the "Voluntary Advanced Technology Incentives Program." A mill can enroll by indicating its intention to participate in the program either as part of its application for a National Pollutant Discharge Elimination System (NPDES) permit, or through separate correspondence to

the permitting authority as long as the mill signs the correspondence in accordance with 40 CFR 122.22.

- (d) Existing effluent quality means the level at which the pollutants identified in §430.24(a)(1) are present in the effluent of a mill "enrolled" in the "Voluntary Advanced Technology Incentives Program."
- (e) Kappa number is a measure of the lignin content in unbleached pulp, determined after pulping and prior to bleaching.
- (f) Voluntary Advanced Technology Incentives Program is the program established under §430.24(b) (for existing direct dischargers) and §430.25(c) (for new direct dischargers) whereby participating mills agree to accept enforceable effluent limitations and conditions in their NPDES permits that are more stringent than the "baseline BAT limitations or NSPS" that would otherwise apply, in exchange for regulatory- and enforcement-related rewards and incentives.
- § 430.22 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT).
- (a) Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this subpart must achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT):

§430.22

SUBPART B

[BPT effluent limitations for bleached kraft facilities where market pulp is produced]

Pollutant or pollutant parameter	Kg/kkg (or pounds per 1,000 lb) of product			
	Continuous dischargers		Non-contin-	
	Maximum for any 1 day	Average of daily values for 30 consecutive days	uous dis- chargers (annual average)	
BOD5	15.45	8.05	4.52	
TSS	30.4	16.4	9.01	
pH	(¹)	(י)	(1)	

¹ Within the range of 5.0 to 9.0 at all times.

SUBPART B

[BPT effluent limitations for bleached kraft facilities where paperboard, coarse paper, and tissue paper are produced]

Pollutant or pollutant parameter	Kg/kkg (or pounds per 1,000 lb) of product			
	Continuous dischargers		Non-contin-	
	Maximum for any 1 day	Average of daily values for 30 con- secutive days	uous dis- chargers (annual average)	
BOD5	13.65	7.1	3.99	
TSS	24.0	12.9	7.09	
Hq	(1)	(1)	(1)	

¹ Within the range of 5.0 to 9.0 at all times.

SUBPART B

[BPT effluent limitations for bleached kraft facilities where pulp and fine papers are produced]

-	Kg/kkg (or pounds per 1,000 lb) of product		
	Continuous dischargers		Non-contin-
Pollutant or pollutant parameter	Maximum for any 1 day	Average of daily values for 30 con- secutive days	uous dis- chargers (annual average)
BOD5	10.6	5.5	3.09
TSS	22.15	11.9	6.54
pH	(1)	(1)	(1)

¹ Within the range of 5.0 to 9.0 at all times.

SUBPART B

[BPT effluent limitations for soda facilities where pulp and paper are produced]

Pollutant or pollutant parameter	Kg/kkg (or pounds per 1,000 lb) of product		
	Continuous dischargers		
	Maximum for any 1 day	Average of daily values for 30 con- secutive days	Non-contin- uous dis- chargers (annual average)
BOD5	13.7 24.5 (¹)	7.1 13.2 (¹)	3.99 7.25

¹ Within the range of 5.0 to 9.0 at all times.

§430.22

40 CFR Ch. I (7-1-12 Edition)

(b) The following limitations establish the quantity or quality of pollutants or pollutant properties, controlled by this section, resulting from the use of wet barking operations, which may be discharged by a point source subject to the provisions of this subpart. These

limitations are in addition to the limitations set forth in paragraph (a) of this section and shall be calculated using the proportion of the mill's total production due to use of logs which are subject to such operations:

SUBPART B
[BPT effluent limitations for bleached kraft facilities where market pulp is produced]

Pollutent or pollutent parameter	Kg/kkg (or pounds per 1,000 lb) of product		
	Continuous dischargers		Non-contin-
Pollutant or pollutant parameter	Maximum for any 1 day	Average of daily values for 30 con- secutive days	uous dis- chargers (annual average)
BOD5	2.3 5.3 (¹)	1.2 2.85 (¹)	0.70 1.55 (¹)

¹ Within the range of 5.0 to 9.0 at all times.

SUBPART B [BPT effluent limitations for bleached kraft facilities where paperboard, coarse paper, and tissue paper are produced]

	Kg/kkg (or pounds per 1,000 lb) of product		
	Continuous dischargers		Nt
Pollutant or pollutant parameter	Maximum for any 1 day	Average of daily values for 30 con- secutive days	Non-contin- uous dis- chargers (annual average)
BOD5	2.25 5.75 (¹)	1.2 3.1 (¹)	0.65 1.70 (¹)

¹¹ Within the range of 5.0 to 9.0 at all times.

SUBPART B [BPT effluent limitations for bleached kraft facilities where pulp and fine papers are produced]

Poliutant or pollutant parameter -	Kg/kkg (or pounds per 1,000 lb) of product			
	Continuous dischargers		Non-contin-	
	Maximum for any 1 day	Average of daily values for 30 con- secutive days	uous dis- chargers (annual average)	
BOD5		1.95	1.0	0.55
TSS		5.3	2.85	1.55
pH		(¹)		(¹)

^{&#}x27;Within the range of 5.0 to 9.0 at all times.

§ 430.22

SUBPART B
[BPT effluent limitations for soda facilities where pulp and papers are produced]

	Kg/kkg (or pounds per 1,000 lb) of product		
	Continuous dischargers		Non-contin-
Pollutant or pollutant parameter	Maximum for any 1 day	Average of daily values for 30 con- secutive days	uous dis- chargers (annual average)
BOD5	2.05	1.1	0.60
pH	5.25 (¹)	2.8 (¹)	1.55

¹ Within the range of 5.0 to 9.0 at all times.

(c) The following limitations establish the quantity or quality of pollutants or pollutant parameters, controlled by this section, resulting from the use of log washing or chip washing operations, which may be discharged by a point source subject to the provi-

sions of this subpart. These limitations are in addition to the limitations set forth in paragraph (a) of this section and shall be calculated using the proportion of the mill's total production due to use of logs and/or chips which are subject to such operations:

SUBPART B
[BPT effluent limitations for bleached kraft facilities where market pulp is produced]

Pollutant or pollutant parameter —	Kg/kkg (or pounds per 1,000 lb) of product		
	Continuous dischargers		Non-contin-
	Maximum for any 1 day	Average of daily values for 30 con- secutive days	uous dis- chargers (annual average)
BOD5 TSS	0.2 0.6	0.1 0.3	0.1 0.15
pH	(¹)	(¹)	(¹)

¹ Within the range of 5.0 to 9.0 at all times.

SUBPART B [BPT effluent limitations for bleached kraft facilities where paperboard, coarse paper, and tissue paper are produced]

Pollutant or pollutant parameter	Kg/kkg (or pounds per 1,000 lb) of product		
	Continuous dischargers		Non-contin-
	Maximum for any 1 day	Average of daily values for 30 con- secutive days	uous dis- chargers (annual average)
BOD5	0.25 0.65 (¹)	0.15 0.35 (¹)	0.05 0.20 (¹)

¹ Within the range of 5.0 to 9.0 at all times.

§ 430.22

40 CFR Ch. I (7-1-12 Edition)

SUBPART B
[BPT effluent limitations for bleached kraft facilities where pulp and fine papers are produced]

Poliulant or callidant parameter	Kg/kkg (or pounds per 1,000 lb) of product		
	Continuous dischargers		Non-contin-
Pollutant or pollutant parameter	Maximum for any 1 day	Average of daily values for 30 con- secutive days	uous dis- chargers (annual average)
BOD5	0.2 0.55 (¹)	0.1 0.3 (¹)	0.05 0.15 (¹)

¹ Within the range of 5.0 to 9.0 at all times.

SUBPART B
[BPT effluent limitations for soda facilities where pulp and papers are produced]

		Kg/kkg (or pounds per 1,000 lb) of product		
Pollutant or pollutant parameter	Continuous dischargers		Non-contin-	
ronulant of politiant parameter	Maximum for any 1 day	Average of daily values for 30 con- secutive days	uous dis- chargers (annual average)	
BOD5	0.15 0.5 (¹)	0.1 0.25 (¹)	0.05 0.15 (¹)	

¹ Within the range of 5.0 to 9.0 at all times.

(d) The following limitations establish the quantity or quality of pollutants or pollutant properties, controlled by this section, resulting from the use of log flumes or log ponds, which may be discharged by a point source subject to the provisions of this subpart. These

limitations are in addition to the limitations set forth in paragraph (a) of this section and shall be calculated using the proportion of the mill's total production due to use of logs which are subject to such operations:

SUBPART B
[BPT effluent limitations for bleached kraft facilities where market pulp is produced]

Pollutant or pollutant parameter	Kg/kkg (or pounds per 1,000 lb) of product		
	Continuous dischargers		Non-contin-
ronutan of politiant parameter	Maximum for any 1 day	Average of daily values for 30 con- secutive days	uous dis- chargers (annual average)
BOD5	0.4 1.15 (¹)	0.2 0.6 (¹)	0.15 0.35 (¹)

¹ Within the range of 5.0 to 9.0 at all times.

§ 430.24

SUBPART B [BPT effluent limitations for bleached kraft facilities where paperboard, coarse paper, and tissue paper are produced]

Pollutant or pollutant parameter -	Kg/kkg (or pounds per 1,000 lb) of product			
	Continuous dischargers		Non-contin-	
	Maximum for any 1 day	Average of daily values for 30 con- secutive days	uous dis- chargers (annual average)	
BOD5 TSS	0.45 1.25	0.25 0.7	0.10 0.35	
pH	(')	('')	(1)	

Within the range of 5.0 to 9.0 at all times.

SUBPART B [BPT effluent limitations for bleached kraft facilities where pulp and fine papers are produced]

	Kg/kkg (or pounds per 1,000 lb) of product			
	Continuous dischargers			
Poliutant or poliutant parameter	Maximum for any 1 day	Average of daily values for 30 con- secutive days	Non-contin- uous dis- chargers (annual average)	
BOD5TSS	0.35 1.15	0.2 0.6	0.10 0.30	
pH	(1)	(1)	(1)	

¹ Within the range of 5.0 to 9.0 at all times.

SUBPART B [BPT effluent limitations for soda facilities where pulp and papers are produced]

·	Kg/kkg (or pounds per 1,000 lb) of product			
Dell'atant a call dans a call	Continuous dischargers		Non contin	
Poliutant or pollutant parameter	Maximum for any 1 day	Average of daily values for 30 con- secutive days	Non-contin- uous dis- chargers (annual average)	
BOD5	0.3 1.1 (¹)	0.2 0.55	0.10 0.35	

¹Within the range of 5.0 to 9.0 at all times.

§430.23 Effluent limitations representing the degree of effluent reduction attainable by the application of the best conventional pollutant control technology (BCT).

Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this subpart must achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best conventional pollutant control technology (BCT). The limitations shall be the same as those specified in §430.22 of this subpart for the best practicable control technology currently available (BPT).

§ 430.24 Effluent limitations resenting the degree of effluent reduction attainable by the applica-tion of best available technology economically achievable (BAT).

Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this subpart must

§ 430.24

(b) The following limitations apply with respect to each fiber line enrolled in the Voluntary Advanced Technology Incentives Program:

- (1) Stage 1 Limitations: Numeric limitations that are equivalent to the discharger's existing effluent quality or the discharger's current effluent limitations established under CWA section 301(b)(2), whichever are more stringent. for the pollutants identified in paragraph (a)(1) of this section (with the exception of COD). For AOX, the permitting authority must determine existing effluent quality for each fiber line enrolled in the Voluntary Advanced Technology Incentives Program at the end of the pipe based on loadings attributable to that fiber line. For the remaining pollutants, with the exception of COD, the permitting authority must determine existing effluent quality for each fiber line enrolled in the Voluntary Advanced Technology Incentives Program at the point where the wastewater containing those pollut-ants leaves the bleach plant. These limitations must be recalculated each time the NPDES permit of a discharger enrolled in the Voluntary Advanced Technology Incentives Program is reissued, up to:
- (i) April 15, 2004 for all pollutants in paragraph (a)(1) of this section except AOX: and
- (ii) The date specified in paragraph (b)(4)(ii) of this section for achieving

the applicable AOX limitation specified in paragraph (b)(4)(i).

- (2) Best Professional Judgment Milestones: Narrative or numeric limitations and/or special permit conditions, as appropriate, established by the permitting authority on the basis of his or her best professional judgment that reflect reasonable interim milestones toward achievement of the effluent limitations specified in paragraphs (b)(3) and (b)(4) of this section, as applicable. after consideration of the Milestones Plan submitted by the discharger in accordance with paragraph (c) of this section.
- (3) Six-year Milestones: By April 15, 2004 all dischargers enrolled in the Voluntary Advanced Technology Incentives Program must achieve the following:
- (i) The effluent limitations specified in paragraph (a)(1) of this section, except that, with respect to AOX, dischargers subject to Tier I effluent limitations specified in paragraph (b)(4)(i) of this section must achieve the AOX limitation specified in that paragraph; or
- (ii) For dischargers that use exclusively TCF bleaching processes as of April 15, 2004, the effluent limitations specified in paragraph (a)(2) of this section.
 - (4)(i) Stage 2 Limitations:

ULTIMATE VOLUNTARY ADVANCED TECHNOLOGY INCENTIVES PROGRAM BAT LIMITATIONS

			AOX (kg/kkg)				
Tier	Kappa number (annual	Filtrate	Total pulping area conden- sate, evaporator conden-	Non-	TCF#	тс	 F
1161	average) recycling wastewater flow (annual av. Max-		cycling sate, and bleach plant wastewater flow (annual average)	imum for any 1	Annual average	Maximum for any 1 day	Annual av- erage
Tier I	20 (softwood furnish) 13 (Hardwood furnish)	(b)	N/A	0.58	0.26	<ml<sup>c</ml<sup>	(a)
Tier II Tier III	NA	(p)	10 cubic meters/kkg 5 cubic meters/kkg	0.23 0.11	0.10 0.05	<ml° <ml°< td=""><td>(d)</td></ml°<></ml° 	(d)

a Non-TCF: Pertains to any fiber line that does not use exclusively TCF bleaching processes.
b Complete recycling to the chemical recovery system of all filtrates generated prior to bleaching. Under Tier I, this includes all filtrates up to the point where kappa number is measured.
c"::ML" means less than the minimum level specified in § 430.01(i) for the particular pollutant.
d This regulation does not specify this type of limitation for this pollutant; however, permitting authorities may do so as appropriate.

priate.
N/A means "not applicable."

(ii) Deadlines.

(A) A discharger enrolled in Tier I of the Voluntary Advanced Technology

Incentives Program must achieve the Tier I limitations in paragraph (b)(4)(i) of this section by April 15, 2004.

- (B) A discharger enrolled in Tier II of the Voluntary Advanced Technology Incentives Program must achieve the Tier II limitations in paragraph (b)(4)(i) of this section by April 15, 2009.
- (C) A discharger enrolled in Tier III of the Voluntary Advanced Technology Incentives Program must achieve the Tier III limitations in paragraph (b)(4)(i) of this section by April 15, 2014.
- (c) All dischargers enrolled or intending to enroll in the Voluntary Advanced Technology Incentives Program must submit to the NPDES permitting authority a Milestones Plan covering all fiber lines enrolled or intended to be enrolled in that program at their mill by October 5, 1999 or the date the discharger applies for an NPDES permit containing limitations and conditions based on paragraph (b) of this section, whichever is later. Mills may claim all or part of the Milestones Plan as confidential business information (CBI) in accordance with 40 CFR part 2 and 40 CFR 122.7. If a mill claims all or part of the plan as CBI, the mill must prepare and submit to the NPDES permitting authority a summary of the plan for public release. The Milestones Plan must include the following information:
- (1) A description of each anticipated new technology component or process modification that the discharger intends to implement in order to achieve the limitations in paragraphs (b)(3) and (b)(4) of this section;
- (2) A master schedule showing the sequence of implementing the new technology components or process modifications and identifying critical path relationships within the sequence;
- (3) A schedule for each individual new technology component or process modification that includes:
- (i) The anticipated initiation and completion dates of construction, installation and operational "shake-

- down' period associated with the technology components or process modifications and, when applicable, the anticipated dates of initiation and completion of associated research, process development, and mill trials;
- (ii) The anticipated dates that the discharger expects the technologies and process modifications selected to achieve the limitations specified in paragraphs (b)(3) and (b)(4) of this section to be operational on a full-scale basis; and
- (iii) The anticipated magnitude of reductions in effluent quantity and the anticipated improvements in effluent quality associated with each technology and process modification implemented as measured at the bleach plant (for bleach plant, pulping area and evaporator condensates flow and BAT parameters other than Adsorbable Organic Halides (AOX)) and at the end of the pipe (for AOX), and the dates the discharger expects those reductions and improvements to be achieved;
- (4) Contingency plans in the event that any technology or process specified in the Milestones Plan need to be adjusted or alternative approaches developed to ensure that the limitations specified in paragraphs (b)(3) and (b)(4) of this section are met; and
- (5) A signature by the responsible corporate officer as defined in 40 CFR 122.22.
- (d) The following additional effluent limitations apply to all dischargers subject to this section in accordance with the previous subcategorization scheme unless the discharger certifies to the permitting authority that it is not using these compounds as biocides. Also, for non-continuous dischargers, concentration limitations (mg/l) shall apply. Concentration limitations will only apply to non-continuous dischargers:

SUBPART B
[Supplemental BAT effluent limitations for bleached kraft facilities where market pulp is produced]

		Maximum for any 1 day		
Pullutant or pollutant property	kg/kkg (or pounds per 1,000 lb) of product	Milligrams/liter		
Pentachlorophenol	0.0019	(0.011)(41.6)/v		

§ 430.25

SUBPART B-Continued

[Supplemental BAT effluent limitations for bleached kraft facilities where market pulp is produced]

	Maximum for any 1 day		
Pullutant or pollutant property	kg/kkg (or pounds per 1,000 lb) of product	Milligrams/liter	
Trichlorophenoly = wastewater discharged in kgal per ton product.	0.012	(0.068)(41.6)/y	

SUBPART B

[Supplemental BAT effluent limitations for bleached kraft facilities where paperboard, coarse paper, and tissue paper are produced]

	Maximun for any 1 day		
Pollutant or pollutant property	kg/kkg (or pounds per 1,000 lb) of product	Milligrams/liter	
Pentachlorophenol		(0.11)(35.4)/y (0.068)(35.4)/y	

SUBPART B

[Supplemental BAT effluent limitations for bleached kraft facilities where pulp and fine papers are produced and soda facilities where pulp and paper are produced]

		Maximum for any 1 day		
Pollutant or pollutant property	kg/kkg (or pounds per 1,000 lb) of product	Milligrams/liter		
Pentachlorophenol Trichlorophenol y = wastewater discharged in kgal per ton of product.		(0.011) (30,9)/y (0.068) (30,9)/y		

(e) Pursuant to 40 CFR 122.44(i) and 122.45(h), a discharger must demonstrate compliance with the effluent limitations in paragraph (a)(1) or (b)(3) of this section, as applicable, by monitoring for all pollutants (except for AOX and COD) at the point where the wastewater containing those pollutants leaves the bleach plant. The permitting authority may impose effluent limitations and/or monitoring requirements on internal wastestreams for any other pollutants covered in this section as appropriate under 40 CFR 122.44(i) and 122.45(h). In addition, a discharger subject to a limitation on total pulping area condensate, evaporator condensate, and bleach plant wastewater flow under paragraph (b)(4)(i) of this section, for Tier II and Tier III, must demonstrate compliance with that limitation by establishing and maintaining flow measurement equipment to monitor these flows at the point or points where they leave the pulping area, evaporator area, and bleach plant.

[63 FR 18635, Apr. 15, 1998; 63 FR 42239, Aug. 7, 1998, as amended at 64 FR 36586, July 7, 1999]

§ 430.25 New source performance standards (NSPS).

New sources subject to this subpart must achieve the following new source performance standards (NSPS), as applicable.

(a) The following standards apply to each new source that commenced discharge after June 15, 1988 and before June 15, 1998, provided that the new source was constructed to meet these standards:

- * Corrections
- · Latest Updates
- User Info
- FAQs
- · Agency List

Related Resources

The Code of Federal
Regulations (CFR) annual
edition is the codification of
the general and permanent
rules published in the Federal
Register by the departments
and agencies of the Federal
Government produced by the
Office of the Federal Register
(OFR) and the Government
Publishing Office.

Download the <u>Code of</u> Federal Regulations in XML.

Parallel Table of Authorities and Rules for the Code of Federal Regulations and the United States Code Text | PDF

Find, review, and submit comments on Federal rules that are open for comment and published in the Federal Register using Regulations.gov.

Purchase individual CFR titles from the U.S. Government Online Bookstore.

Find issues of the CFR (including issues prior to 1996) at a local <u>Federal</u> depository library.

§430.24 Effluent limitations representing the degree of effluent reduction attainable by the application of best available technology economically achievable (BAT).

Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this subpart must achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT).

- (a) Except as provided in paragraph (b) of this section—
- (1) The following effluent limitations apply with respect to each fiber line that does not use an exclusively TCF bleaching process, as disclosed by the discharger in its NPDES permit application under 40 CFR 122.21(g)(3) and certified under 40 CFR 122.22:

Subpart B

40CFR 430.24(a)(1)

BAT effluent limitations

Pollutant or pollutant property	Maximum for any 1 day	Monthly average
TCDD	<ml<sup>a</ml<sup>	(b)
TCDF	31.9°	(b)
Chloroform .	6.92 ^d	4.14(^d)
Trichlorosyringol	<ml<sup>a</ml<sup>	(^b)
3,4,5-trichlorocatechol	<ml<sup>a</ml<sup>	(b)
3,4,6-trichlorocatechol	<ml<sup>a</ml<sup>	(b)
3,4,5-trichloroguaiacol	<ml<sup>a</ml<sup>	(b)
3,4,6-trichloroguaiacol	<ml<sup>a</ml<sup>	(b)
4,5,6-trichloroguaiacol	<ml<sup>a</ml<sup>	(b)
2,4,5-trichlorophenol	<ml<sup>a</ml<sup>	(b)
2,4,6-trichlorophenol	<ml<sup>a</ml<sup>	(b)
Tetrachlorocatechol	<ml<sup>a</ml<sup>	(^b)
Tetrachloroguaiacol	<ml<sup>a</ml<sup>	(^b)
2,3,4,6-tetrachlorophenol	<ml<sup>a</ml<sup>	(b)
Pentachlorophenol	<ml<sup>a</ml<sup>	(^b)

d = grams per 1000 Kilograms (g/kkg)

40 CFR Ch. I (7-1-10 Edition)

CAS		Minimum monitoring frequency			
number	Pollutant	Non-ECF ^a	Advanced ECF ^{b,t}	TCF°	
2539175	Tetrachloroguiacol Trichlorosyringol 4,5,6-trichloroguaiacol 3,4,6-trichlorocatechol 3,4,5-trichlorocatechol 3,4,5-trichloroguaiacol 2,3,4,6-tetrachlorophenol 3,4,6-trichloroguaiacol Pentachlorophenol 2,4,6-trichlorophenol	Monthly	Monthly	(d) (d) (d) (d) (d) (d) (d) (d) (d)	
95954 1746016 51207319 67663	2,4,5-trichlorophenol® 2,3,7,8-TCDD 2,3,7,8-TCDF Chloroform	Monthly Monthly Monthly Weekly	Monthly Monthly Monthly Monthly	(d) (d) (d)	

a Non-ECF: Pertains to any fiber line that does not use exclusively ECF or TCF bleaching processes, or exclusively ECF and TCF bleaching processes as disclosed by the discharger in its permit application under 40 CFR 122.21(g)(3) and certified under 40 CFR 122.22. Advanced ECF: consists of the use of extended delignification or other technologies that achieve at least the Tier 1 performance levels specified in § 430.24(b)(4)(i).

a TCF: Pertains to any fiber line that uses exclusively TCF bleaching processes, as disclosed by the discharger in its permit application under 40 CFR 122.21(g)(3) and certified under 40 CFR 122.22.

a This regulation does not specify a limit for this pollutant for TCF bleaching processes.
a Monitoring frequency does not apply to this compound when used as a biocide. The permitting authority must determine the appropriate monitoring frequency for this compound, when used as a biocide under 40 CFR 122.44(i).

Monitoring requirements for these pollutants by mills certifying as Advanced ECF in their NPDES permit application or other communication to the permitting authority must determine the appropriate monitoring frequency for these pollutants by mills certifying as Advanced ECF in their NPDES permit application or other communication to the permitting authority must determine the appropriate monitoring frequency for these pollutants beyond that time under 40 CFR 122.44(i).

(d) Reduced monitoring frequencies for AOX under the Voluntary Advanced Technology Incentives Program (year one). The following monitoring frequencies apply to direct dischargers enrolled in the Voluntary Advanced

Technology Incentives Program established under Subpart B of this part for a duration of one year after achievement of the applicable BAT limitations specified in §430.24(b)(4)(i) or NSPS specified in §430.25(c)(2):

CAS	Pollutant	Non-ECF,	Advanced ECF,	TCF,
number		any tier ^a	any tier ^b	any tier°
59473040	AOX	Daily	Weekly	None specified.

a Non-ECF: Pertains to any fiber line that does not use exclusively ECF or TCF bleaching processes.
b Advanced ECF: Pertains to any fiber line that uses exclusively Advanced ECF bleaching processes or exclusively ECF and
TCF bleaching processes, as disclosed by the discharger in its permit application under 40 CFR 122.21(g)(3) and certified under
40 CFR 122.22. Advanced ECF consists of the use of extended delignification or other technologies that achieve at least the Tier
I performance levels specified in § 430.24(b)(4)(1).
c TCF: Pertains to any fiber line textures exclusively TCF bleaching processes, as disclosed by the discharger in its permit application under 40 CFR 122.21(g)(3) and certified under 40 CFR 122.22.

(e) Reduced monitoring frequencies for AOX under the Voluntary Advanced Technology Incentives Program (years two through five). The following monitoring frequencies apply to mills en-rolled in the Voluntary Advanced Technology Incentives Program established under Subpart B of this part for a duration of four years starting one year after achievement of the applicable BAT limitations specified in §430.24(b)(4)(i) or NSPS specified in §430.25(c)(2):

CAS number	Pollutant	Non-ECF any tiera	Advanced ECF—tier I ^b	Advanced ECF—tier II ^b	Advanced ECF—tier III ^b	TCF— any tier
59473040	AOX	Daily	Monthly	Quarterly	Annually	None specified.

a Non-ECF: Pertains to any fiber line that does not use exclusively ECF or TCF bleaching processes.

b Advanced ECF: Pertains to any fiber line that uses exclusively Advanced ECF bleaching processes or exclusively ECF and TCF bleaching processes, as disclosed by the discharger in its permit application under 40 CFR 122.21(g)(3) and certified under 40 CFR 122.22. Advanced ECF consists of the use of extended delignification or other technologies that achieve at least the Tier I performance levels specified in § 430.24(b)(4)(i).

cTCF: Pertains to any fiber line that uses exclusively TCF bleaching processes, as disclosed by the discharger in its permit application under 40 CFR 122.21(g)(3) and certified under 40 CFR 122.22.

TABLE 4C INDUSTRIAL WASTEWATER DISCHARGERS TO BLACKMATER RIVER SUB-BASIN

							,				
PRESENT 1	AVERACE	2.88 x .10 [£])			0/# 56.	2.1 #/15	N/N			
	MAXIMUM BOD ₅	4.4 x 10 ⁶				2.4 #/D	3.4 #/10	V/V			
	AVERAGE BOD ₅		No Limits	No Limits	No Limits	1.2 #/D	1.7 W/D	N/N			
	ACTUAL FLOW (NGD)	14x10 ga1/yr	311.	.05	.72	. 002	.002	*V/N	Period- ic Dis- charge	.197	
	TREATMENT	Clarification, Accarion and Holding Ponds	None	None	None	Settling Box	None	กแดง	Spring Branch holding Pond w/ Aeration	Gooling Water Discharge	
INDUSTRIAL DISCHARGERS	RECETATING STREAM	Blackwater River	Blackwater River	Trib, to Blackwater River	Blackwater River	Spring Branch	Spring Branch None	Woody's Pond	Spring Branch	Spring Branch Cauling Water Discharge	
HLSDUNI	DISCHARGER	Option Camp Meach Paper (001)	fon Camp Building Products (001)	Regis Paper Company	Union Camp Bleach Paper (002)	Masonite Corporation #1	Hasonite Corporation #2	DESCO to Steven Kent	Spurlock (001)	Spurlock (002)	

International Paper - Franklin

Permit Type:VPDES	:VPDES		que en consta											
			er de l'inch						***************************************					
Permit No	Due Date	outfall	pram	Parameter Description gavg	qavg	Lim-Avg qmax	qmax	Lim-Max cmin		Lim-Min cavg Lim-Avg cmax	Lim-Avç	і стах	Lim-Max	
VA0004162	10-Jan-10 001	100	9	FLOW	141	Į,	165	N	*	****	****	1	****	
VA0004162	10-Feb-10 001	6	904	FLOW	113	Z Z	152	i Z	*	***	****	1	****	
VA0004162	10-Mar-10 001	8	99	FLOW	61	Z	84	Z Z	*	******	****		****	
VA0004162	10-Apr-10 001	8	001	FLOW		Z	,	- - - -	*	****	*****		****	
VA0004162	10-Dec-10 001	8	001	FLOW	1	Z Z		NE.	*	****	***		****	
VA0004162	10-Jan-11 001	904	001	FLOW		Z N	•	N	*	****	*****		****	
VA0004162	<u> </u>	100	001	FLOW	37	J N	58	, Z	*	*****	*****		*****	
VA0004162		100	001	FLOW	32	NL	34	- Z	*	*****	****	1	*****	
VA0004162		8	004	FLOW	•	J _N		, Z	*	******	****	1	****	
VA0004162		8	001	FLOW	ı	NL		N.	*	****	****	1	*****	
VA0004162		001	001	FLOW		Z Z	ı	Z Z		*****	****	- 1	****	
VA0004162	10-Feb-12 001	9	001	FLOW	44	귛	57		*	****	***		****	
VA0004162	10-Mar-12 001	001	004	FLOW	35	귛	44	ų Z	1	*	****	- 1	****	
VA0004162	10-Apr-12 001	90	004	FLOW	ı	z z		∀		****	****		***	
VA0004162	10-Dec-12 001	901	001	FLOW	ı	J.		₹		****	***		****	
VA0004162		00	001	FLOW		닐	1	, N N	····	***	****		*****	

Permit No	Due Date	outfall	outfall pram	Parameter Description qavg	qavg	Lim-Avg qmax	qmax	Lim-Max cmin	A44,65474, 5544	Lim-Min cavg	cavg	Lim-Avg cmax	стах	Lim-Max	
VA0004162	10-Feb-13 001	9	- FO	FLOW	125	귈	185	N N		****		***		****	
VA0004162	10-Mar-13 001	90	004	FLOW	06	J S	153	Ŋ		****	,	****		****	
VA0004162	10-Apr-13 001	99	004	FLOW	,	J Z		J Z		***	1	***		****	
VA0004162	10-Dec-13 001	100	004	FLOW	-	귈	,	N		****	ı	*****		*****	
VA0004162	10-Jan-14 001	8	100	FLOW		N.	-	J _Z		****		****	,	****	
VA0004162	10-Feb-14 001	9	994	FLOW	112	J Z	156	Z Z		****		*****		****	
VA0004162	10-Mar-14 001	9	99	FLOW	97	귈	142	Z	ı	****		*****		****	
VA0004162	10-Apr-14 001	10	001	FLOW	1	J Z		٦ Z		****		****		****	
VA0004162	10-Dec-14 001	100	001	FLOW		Z Z	ı	Z		****	,	*****		*****	
VA0004162	10-Jan-15 001	001	001	FLOW	1	Z		N I	ı	***	1	****		****	
VA0004162	10-Feb-15 001	100	001	FLOW	134	ź	181	불		****	,	****	1	****	
VA0004162	10-Mar-15 001	100	001	FLOW	58	N	112	N		****		****		****	
VA0004162	10-Apr-15 001	50	001	FLOW	ı	귈		J.	1	*****	ı	******		****	
VA0004162	10-Dec-15 001	100	004	FLOW		Z		Ŋ		*****	,	*****		*****	
VA0004162	10-Jan-10 001	99	002	Hd		****		*****	7.3	0.9		****	7.4	0.6	
VA0004162	10-Feb-10 001	904	002	Hd		****		****	7.3	6.0		****	7.7	9.0	
VA0004162	10-Mar-10 001	8	002	ЬН		****		****	7.5	6.0		****	7.9	9.0	
VA0004162	10-Apr-10 001	100	002	Hd	,	****	1	*****	1	0.0		****		9.0	

3/42

 1				T	T	—Т	Т	Т	Т	T	Т	T	Т		T	T		······
				,														
Lim-Max	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	0.6	9.0	0.6
стах		ī	8.6	8.4			,	8.4	8.0				8.2	8.0	ŧ			8.1
Lim-Avg cmax	****	******	*****	*****	****	*****	****	****	***	*****	*****	*****	*****	****	****	******	****	*****
	ı		,			. ,	1	,			t	ı	ſ		1	1	1	1
Lim-Min cavg	0.0	0.9	6.0	0.9	0.9	6.0	0.9	6.0	6.0	6.0	6.0	6.0	6.0	6.0	0.9	0.0	6.0	6.0
cmin			8.4	7.9			,	7.8	7.9			,	7.2	7.8		ı		7.9
Lim-Max cmin	*****	*****	*****	*****	******	****	*****	*****	****	*****	****	****	*****	****	****	****	****	****
123494												_						
Lim-Avg qmax	*****	****	*****	****	*****	*****	*****	**	*****	*****	****	****	****	****	****	****	****	*******
	1								1					1	1		1	
Parameter Description qavg	ЬН	Hd	Hd	Hd	Hd	Hd	Нd	Hd	ЬН	Hď	Hd							
pram	002	002	002	002	002	002	002	002	005	002	002	002	002	002	200	002	002	002
outfall	98	004	000	100	100	99.	99	500	93	001	100	904	8	Ş	200	904	901	100
Due Date	10-Dec-10 001	10-Jan-11 001	10-Feb-11 001	10-Mar-11 001	10-Apr-11 001	10-Dec-11 001	10-Jan-12 001	10-Feb-12 001	10-Mar-12 001	10-Apr-12 001	10-Dec-12 001	10-Jan-13 001	10-Feb-13 001	10-Mar-13 001	10-Apr-13 001	10-Dec-13 001	10-Jan-14 001	10-Feb-14 001
Permit No	VA0004162																	

HAS

Permit No	Due Date	outfall	pram	Parameter Description gavg	i Lim-Avg qmax		Lim-Max cmin		Lim-Min cavg	Lim-Avg	стах	Lim-Max	
VA0004162	10-Mar-14 001	100	002	- Hd	****	*****	7.4	6.0		****	8.0	9.0	
VA0004162	10-Apr-14 001	8	002	- Hd	*****	******	***	6.0		****	1	9.0	
VA0004162	10-Dec-14 001	100	002	- Hd	****	****	**	6.0		*****		0.6	
VA0004162	10-Jan-15 001	100	002	Hd	*****	*****	-	6.0	-	****	-	9.0	
VA0004162	10-Feb-15 001	100	002	- Hd	********	****	7.8	6.0		*****	8.0	9.0	
VA0004162	10-Mar-15 001	100	002	- Hd	*****	****	6.9	6.0		****	7.9	9.0	
VA0004162	10-Apr-15 001	100	002	Hd	****	*****	***	6.0		****		9.0	
VA0004162	10-Dec-15 001	004	002	- Hd	******	****	**	6.0		***		9.0	
VA0004162	10-Jan-10 001	8	800	cop -	*****	****	***	*****	154	Z Z	178	N/	,
VA0004162	10-Feb-10 001	8	800	cop	*****	****	- ***	*****	160	N	166	N.	
VA0004162	10-Mar-10 001	90	800	cop -	*****	******	***	****	158	N.	166	귈	
VA0004162	10-Apr-10 001	100	800	cop	*****	* * * * * * * * * * * * * * * * * * * *	**	****	,	N N		J Z	
VA0004162	10-Dec-10 001		800	COD	*****	****	**	** ** **		N		N.	
VA0004162	10-Jan-11 001	904	800	COD	****	****	* *	****		L L		N.	
VA0004162	10-Feb-11 001	99	800	cop -	****	********	**	*****	83	¥	84	귛	
VA0004162	10-Mar-11 001	8	800	cop .	*****	*****	***	****	8	z	97	뉟	
VA0004162	10-Apr-11 001	8	800	COD	****	*****	***	****		N N		뉟	
VA0004162	10-Dec-11 001	100	800	cop -	*****	*****	**	***		볼	,	귈	

Permit No	Due Date	outfall	pram	Parameter Description gavg	Lim-Avg qmax	Lim-Max cmin	43038433	Lim-Min	cavg	Lim-Avg cmax	сшах	Lim-Max	
VA0004162	10-Jan-12 001	200	800	COD	1 *****	****		*****	,	Z Z	-	¥	
VA0004162	10-Feb-12 001	8	800	cop .	*****	*****		******	89	Z Z	75	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
VA0004162	10-Mar-12 001	8	800	COD	*****	*****		*****	89	Z Z	E	뉟	
VA0004162	10-Apr-12 001	100	800	COD	*****	****		****		J _N		¥	
VA0004162	10-Dec-12 001	26	800	- GOD	****	*****		****	ž	귈	1	귛	
VA0004162	10-Jan-13 001	8	800	COD	*****	***		****		N N		귛	
VA0004162	10-Feb-13 001	90	800	- cop	****	****		*****	204	N.	252	귛	
VA0004162	10-Mar-13 001	100	800	COD	**	****		****	236	N	238	J _N	
VA0004162	10-Apr-13 001	8	800	- cop	****	*****		****		귈		N.	
VA0004162	10-Dec-13 001	6	800	COD	****	*****		****	1	Ä		N.	
VA0004162	10-Jan-14 001	001	800	- cop	****	*****		****		뉟		Z Z	
VA0004162	10-Feb-14 001	100	800	cop	****	****		*****	204	Ŋ.	213	N/	
VA0004162	10-Mar-14 001	100	800	COD	*****	*****		****	230	N	237	¥	
VA0004162	10-Apr-14 001	004	800	COD	****	***		*****		Ä.		귈	
VA0004162	10-Dec-14 001	100	800	COD	****	*****		****	ı	N N	1	뉟	
VA0004162	10-Jan-15 001	100	800	сор	****	****		****		N.		뉟	
VA0004162	10-Feb-15 001	100	800	cop	***	*****		****	232	NF	244	Z Z	
VA0004162	10-Mar-15 001	100	800	COD	 ****	*****		****	258	Z Z	272	N.	

Permit No	Due Date	outfall	pram	Parameter Description qavg	Lim-Avg qmax	max Lim-Max cmin	451 (451 (451 (451)	Lim-Min cavg	cavg	Lim-Avg	cmax	Lim-Max	
VA0004162	10-Apr-15 001	100	800	СОБ	*****	*****		****	1	N N		N N	
VA0004162	10-Dec-15 001	8	808	cop .	****	****		*****		Z Z		뉟	
VA0004162	10-Jan-10 001	9	012	PHOSPHORUS, TOTAL-	****	****		*****	1.0	2		¥	
VA0004162	10-Feb-10 001	901	012	PHOSPHORUS, TOTAL-	****	****	ŧ	****	1.04	2	1.06	귈	
VA0004162	10-Mar-10 001	8	012	PHOSPHORUS, TOTAL-	*****	*****		****	0.89	2	76.0	N	
VA0004162	10-Apr-10 001	동	012	PHOSPHORUS, TOTAL-	* ** ** **	***		****	,	2		Į,	
VA0004162	10-Dec-10 001	90	012	PHOSPHORUS, TOTAL-	****	****	1	*****	1	2		귈	
VA0004162	10-Jan-11 001	20	012	PHOSPHORUS, TOTALI-	*****	****	•	*****	1	2		N N	
VA0004162	10-Feb-11 001	100	012	PHOSPHORUS, TOTAL-	*****	****	-	****	1.2	2	1.24	N N	
VA0004162	10-Mar-11 001	100	012	PHOSPHORUS, TOTAL-	***	*****		****	1.19	7	1.23	Z Z	
VA0004162	10-Apr-11 001	901	012	PHOSPHORUS, TOTAL-	****	****		*****	,	2		NF	
VA0004162	10-Dec-11 001	001	012	PHOSPHORUS, TOTAL-	*****	*****		****	ı	2		N.	
VA0004162	10-Jan-12 001	1001	012	PHOSPHORUS, TOTAL-	****	****		*****		7	ı	Z Z	
VA0004162	10-Feb-12 001	001	012	PHOSPHORUS, TOTAL-	****	****		*****	0.72	2	0.73	Z Z	
VA0004162	10-Mar-12 001	1001	012	PHOSPHORUS, TOTAL-	*****	****	1	*****	0.51	2	0.79	귛	
VA0004162	10-Apr-12 001	100	012	PHOSPHORUS, TOTAL-	****	*****	- 1	****	ı	2		귈	
VA0004162	10-Dec-12 001	90	012	PHOSPHORUS, TOTAL-	****	****		*****		2		N.	
VA0004162	10-Jan-13 001	004	012	PHOSPHORUS, TOTAL-	*****	****		*****		2		N.	

Permit No	Due Date	outfall	pram	Parameter Description gavg	g Lim-Avg qmax		Lim-Max cmin	Lim-Min	cavg	Lim-Avg	сшах	Lim-Max	
VA0004162	10-Feb-13 001	90	012	PHOSPHORUS, TOTAL-	*****	**	*	*****	0.83	5	0.85	N.	
VA0004162	10-Mar-13 001	8	012	PHOSPHORUS, TOTAL-	****	*****	*	*****	0.78	2	0.81	뒫	
VA0004162	10-Apr-13 001	됩	012	PHOSPHORUS, TOTAL-	****	****	*	*****		2		₹	
VA0004162	10-Dec-13 001	8	012	PHOSPHORUS, TOTAL-	*****	*****	*	*****		7		Z Z	
VA0004162	10-Jan-14 001	8	012	PHOSPHORUS, TOTAL-	*****	*****		****		2		Į,	
VA0004162	10-Feb-14 001	8	012	PHOSPHORUS, TOTAL-	******	****	**	*****	1.02	2	1.09	귈	
VA0004162	10-Mar-14 001	00	012	PHOSPHORUS, TOTAL-	****	****	<u>.</u> *	****	96.0	2	1.06	Ŋ	
VA0004162	10-Apr-14 001	904	012	PHOSPHORUS, TOTAL-	*****	****	*	****		2		J.	
VA0004162	10-Dec-14 001	90	012	PHOSPHORUS, TOTAL-	****	**	* *	*****		2		Z Z	
VA0004162	10-Jan-15 001	8	012	PHOSPHORUS, TOTAL-	*****	****	<u>,</u>	****		2		ž	
VA0004162	10-Feb-15 001	001	012	PHOSPHORUS, TOTAL-	****	***	* *	****	1.40	2	1.45	귈	
VA0004162	10-Mar-15 001	100	012	PHOSPHORUS, TOTAL-	*****	****	; *	*****	1.37	2	1.40	ž	
VA0004162	10-Apr-15 001	8	012	PHOSPHORUS, TOTAL-	*****	****	*	****		2		귛	
VA0004162	10-Dec-15 001	8	012	PHOSPHORUS, TOTAL-	*****	****	* *	****		2	1	Z Z	
VA0004162	10-Jan-10 001	100	013	NITROGEN, TOTAL (A\$-	*****	****	**	****	2.30	닐	2.90	귈	
VA0004162	10-Feb-10 001	8	013	NITROGEN, TOTAL (A\$-	****	**	*	****	2.41	귈	2.51	J.	
VA0004162	10-Mar-10 001	8	013	NITROGEN, TOTAL (A\$-	*****	****	* *	****	3.1	물	4.0	J.	
VA0004162	10-Apr-10 001	100	013	NITROGEN, TOTAL (A§-	*****	****	*	****		L Z		ž	

#

								Ī										
Lim-Max	J _R	J _N	Ľ Z	N.	L Z	N.	L N	Z Z	귛	N N	N L	Ŋ	Z Z	N N	뉟	뉟	뉟	귈
cmax	ŧ		3.6	4.0				3.4	3.9		ı		2.7	1.9	1			3.60
Lim-Avg cmax	N	N.	J'N	NL	Z	Z K	ź	N N	N.	N.	N	NL	NL	NI.	Ę	Z	¥	<u>F</u>
cavg	1	ı	3.2	3.2		,	ı	3.0	3.2	ſ.		1	2.0	1.8	,	1	,	2.80
Lim-Min cavg	****	****	****	****	*****	****	****	***	****	****	****	****	****	***	****	****	******	****
cmin				,		,					ı	ı		,				
Lim-Max cmin	****	****	****	****	****	****	****	****	****	****	****	*****	****	****	****	****	****	******
q max												1					•	
Lim-Avg qmax	****	*****	****	*****	****	****	*****	******	****	****	****	***	****	****	*****	*****	****	****
	ږه	<u>.</u>		رن	رِٰه		92	-51		ż			ij	-	-51	18-	<u></u>	-61
Parameter Description qavg	NITROGEN, TOTAL (AS-	NITROGEN, TOTAL (AS	NITROGEN, TOTAL (A8-	NITROGEN, TOTAL (AS	NITROGEN, TOTAL (AS	NITROGEN, TOTAL (AS-	NITROGEN, TOTAL (AS-	NITROGEN, TOTAL (AS	NITROGEN, TOTAL (AS-	NITROGEN, TOTAL (AS-	NITROGEN, TOTAL (A§-	NITROGEN, TOTAL (A§-	NITROGEN, TOTAL (A\$-	NITROGEN, TOTAL (AS	NITROGEN, TOTAL (AS	NITROGEN, TOTAL (AS	NITROGEN, TOTAL (AS	NITROGEN, TOTAL (AS-
pram P	013 N	013 N	013 N	013 N	013 N	013 N	013 N	013 N	013 N	013 N	013 N	013 N	013 N	013 N	013 N	013 N	013 N	
outfall						201	ğ		201	301	001	001	301	001	001	100	100	100
Due Date	10-Dec-10 001	10-Jan-11 001	10-Feb-11 001	10-Mar-11 001	10-Apr-11 001	10-Dec-11 001	10-Jan-12 001	10-Feb-12 001	10-Mar-12 001	10-Apr-12 001	10-Dec-12 001	10-Jan-13 001	10-Feb-13 001	10-Mar-13 001	10-Apr-13 001	10-Dec-13 001	10-Jan-14 001	10-Feb-14 001
Permit No	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162

E.

Permit No	Due Date	outfall	outfall pram	Parameter Description gavg		Lim-Avg qmax	Lim-Max cmin		Lim-Min cavg	cavg	Lim-Avg cmax	стах	Пт-Мах	
VA0004162	10-Mar-14 001	93	013	NITROGEN, TOTAL (AS-	*****	**	*****		******	2.3	Z Z	2.6	ij	
VA0004162	10-Apr-14 001	100	013	NITROGEN, TOTAL (A§-	****	* * * * * * * * * * * * * * * * * * * *	*****		****		귛		귛	
VA0004162	10-Dec-14 001	100	013	NITROGEN, TOTAL (A8-	****	* * * *	*****		****		N		ď	
VA0004162	10-Jan-15 001	100	013	NITROGEN, TOTAL (AS-	*****	***	*****		****	·	귛		귈	
VA0004162	10-Feb-15 001	904	013	NITROGEN, TOTAL (AS-	****	***	****		****	2.48	뉳	3.00	N.	
VA0004162	10-Mar-15 001	904	013	NITROGEN, TOTAL (AS-	****	***	****		****	3.05	귛	4.50	귈	
VA0004162	10-Apr-15 001	001	013	NITROGEN, TOTAL (A\$-	*****	- ***	****		***	1	N N		N.	
VA0004162	10-Dec-15 001	90	013	NITROGEN, TOTAL (A\$-	*****	1 * *	****		****	ı	Z Z	,	N.	
VA0004162	10-Jan-10 001	001	305	AMMONIA, AS N NOV-1-	****	***	****	1	****	0.27	2.15	0.55	3.19	
VA0004162	10-Feb-10 001	100	305	AMMONIA, AS N NOV-1-	****	***	*****		******	0.25	2.15	0.28	3.19	
VA0004162	10-Mar-10 001	99	305	AMMONIA, AS N NOV-!-	***	1 * *	****		****	0.35	2.15	0.45	3.19	
VA0004162	10-Apr-10 001	001	305	AMMONIA, AS N NOV-I-	****	***	****		****		2.15		3.19	
VA0004162	10-Dec-10 001	99	305	AMMONIA, AS N NOV-I	****	***	*****	-	*****	,	2.15		3.19	
VA0004162	10-Jan-11 001	004	305	AMMONIA, AS N NOV-1-	**	****	****		*****	1	2.15		3.19	
VA0004162	10-Feb-11 001	100	305	AMMONIA, AS N NOV-I-	**	*****	****		****	0.33	2.15	0.54	3.19	
VA0004162	10-Mar-11 001	100	305	AMMONIA, AS N NOV-I-	***	******	*****		****	0.51	2.15	0.99	3.19	
VA0004162	10-Apr-11 001	100	305	AMMONIA, AS N NOV-I-	****	* * * * * * * * * * * * * * * * * * * *	*****		****		2.15		3.19	
VA0004162	10-Dec-11 001	100	305	AMMONIA, AS N NOV-1-	****	***	****		****	1	2.15	,	3.19	

Permit No	Due Date	outfall	pram	Parameter Description qavg	Lim-Avg qmax	Lim-Avg qmax Lim-Max cmin		cavg	Lim-Min cavg Lim-Avg cmax	сшах	Lim-Max	
VA0004162	10-Jan-12 001	100	305	AMMONIA, AS N NOV-I-	*****	*****	****	•	2.15		3.19	
VA0004162	10-Feb-12 001	100	305	AMMONIA, AS N NOV-I-	****	****	****	0.65	2.15	1.1	3.19	
VA0004162	10-Mar-12 001	8	305	AMMONIA, AS N NOV-I-	*****	*****	****	0.27	2.15	0.36	3.19	
VA0004162	10-Apr-12 001	100	305	AMMONIA, AS N NOV-!-	****	****	*****		2.15		3.19	
VA0004162	10-Dec-12 001	100	305	AMMONIA, AS N NOV-	*****	****	****	1	2.15		3.19	
VA0004162	10-Jan-13 001	- -	305	AMMONIA, AS N NOV-	****	*****	****		2.15		3.19	
VA0004162	10-Feb-13 001	900	305	AMMONIA, AS N NOV-I-	* * * * * * * * * * * * * * * * * * * *	*****	***	0.16	2.15	0.39	3.19	
VA0004162	10-Mar-13 001	100	305	AMMONIA, AS N NOV-I-	*****	*****	****	0.05	2.15	0.11	3.19	
VA0004162	10-Apr-13 001	100	305	AMMONIA, AS N NOV-I-	*****	*****	****		2.15		3.19	
VA0004162	10-Dec-13 001	001	305	AMMONIA, AS N NOV-I-	*****	**	****		2.15		3.19	
VA0004162	10-Jan-14 001	8	305	AMMONIA, AS N NOV-!-	****	****	****		2.15		3.19	
VA0004162	10-Feb-14 001	99	305	AMMONIA, AS N NOV	***	**	****	0.43	2.15	0.89	3.19	
VA0004162	10-Mar-14 001	901	305	AMMONIA, AS N NOV-1-	****	***	****	άΩL	2.15	ᅌ	3.19	
VA0004162	10-Apr-14 001	100	305	AMMONIA, AS N NOV-I-	*****	******	****		2.15		3.19	
VA0004162	10-Dec-14 001	100	305	AMMONIA, AS N NOV-1-	\$ ** ** ** ** **	*****	****		2.15	ı	3.19	
VA0004162	10-Jan-15 001	00	305	AMMONIA, AS N NOV-I-	****	*****	****		2.15	,	3.19	
VA0004162	10-Feb-15 001	004	305	AMMONIA, AS N NOV-I-	****	*****	***	0.60	2.15	1.08	3.19	
VA0004162	10-Mar-15 001	004	305	AMMONIA, AS N NOV-I-	*****	****	****	0.27	2.15	0.37	3.19	

Permit No	Due Date	outfall	pram	Parameter Description gavg		Lim-Avg qmax	PERSONAL PROPERTY.	Lim-Max cmin	25.6 (2.00) (3.00)	Lim-Min cavg	A 1 4 4 4 4 6 7 7 1	Lim-Avg cmax	стах	Lim-Max	
VA0004162	10-Apr-15 001	200	305	AMMONIA, AS N NOV-	,	*****	*	****		*****		2.15	1	3.19	
VA0004162	10-Dec-15 001	100	305	AMMONIA, AS N NOV-	,	****	*	*****		*****		2.15	-	3.19	
VA0004162	10-Jan-10 001	10	306	2,3,7,8-TCDD		****	*	*****		*****	NR.	0.12	R.	0.12	
VA0004162	10-Feb-10 001	1-	306	2,3,7,8-TCDD	,	*****	*	****		****	R R	0.12	R R	0.12	
VA0004162	10-Mar-10 001	100	306	2,3,7,8-TCDD	1	****	*	***		******	<ql< td=""><td>0.12</td><td>ᅌ</td><td>0.12</td><td></td></ql<>	0.12	ᅌ	0.12	
VA0004162	10-Apr-10 001	9	306	2,3,7,8-TCDD	1	****	*	****		*****		0.12	ı	0.12	
VA0004162	10-Dec-10 001	904	306	2,3,7,8-TCDD	,	*****	*	*****		*****		0.12		0.12	
VA0004162	10-Jan-11 001	9	306	2,3,7,8-TCDD	1	****	*	****		****	1	0.12	,	0.12	
VA0004162	10-Feb-11 001	8	306	2,3,7,8-TCDD	,	****	*	****		*****	NR R	0.12	R R	0.12	
VA0004162	10-Mar-11 001	001	306	2,3,7,8-TCDD	,	*****	*	****		****	Ϋ́Ö́L	0.12	å	0.12	***************************************
VA0004162	10-Apr-11 001	100	306	2,3,7,8-TCDD		******	*	******	*	****	1	0.12	1	0.12	
VA0004162	10-Dec-11 001	9	306	2,3,7,8-TCDD	ı	******	**	****	*	****	ŧ.	0.12		0.12	
VA0004162	10-Jan-12 001	001	306	2,3,7,8-TCDD		****	*	***		*****		0.12		0.12	
VA0004162	10-Feb-12 001	100	306	2,3,7,8-TCDD		*****	**	*****		*****	R R	0.12	S.	0.12	
VA0004162	10-Mar-12 001	904	306	2,3,7,8-TCDD	-	* ** **	*	***		****	Å	0.12	å	0.12	
VA0004162	10-Apr-12 001	9	306	2,3,7,8-TCDD		****	*	***	*	*****	,	0.12	1	0.12	urenaven en e
VA0004162	10-Dec-12 001	8	306	2,3,7,8-TCDD		****	*	****	*	*****	,	0.12		0.12	
VA0004162	10-Jan-13 001	100	306	2,3,7,8-TCDD		******	*	*****		*****		0.12		0.12	

Permit No	Due Date	outfall	pram	Parameter Description gavg		Lim-Avg qmax	Lim-Max cmin	0.0000000000000000000000000000000000000	Lim-Min cavg	cavg	Lim-Avg cmax	стах	Lim-Max	
VA0004162	10-Feb-13 001	904	306	2,3,7,8-TCDD		*****	***		*****	R.	0.12	N. R.	0.12	
VA0004162	10-Mar-13 001	100	306	2,3,7,8-TCDD		****	***		****	^QL	0.12	å	0.12	
VA0004162	10-Apr-13 001	904	306	2,3,7,8-TCDD		******	****		****		0.12		0.12	
VA0004162	10-Dec-13 001	100	306	2,3,7,8-TCDD		****	*****		*****		0.12	,	0.12	
VA0004162	10-Jan-14 001	004	306	2,3,7,8-TCDD		*****	***		****	1	0.12		0.12	
VA0004162	10-Feb-14 001	904	306	2,3,7,8-TCDD		****	***	,	*****	NR R	0.12	NR.	0.12	
VA0004162	10-Mar-14 001	001	306	2,3,7,8-TCDD		****	*****	•	*****	<ΩL	0.12	å	0.12	
VA0004162	10-Apr-14 001	100	306	2,3,7,8-TCDD		1 ******	*****	,	****	,	0.12		0.12	
VA0004162	10-Dec-14 001	100	306	2,3,7,8-TCDD			****	ı	****	,	0.12		0.12	
VA0004162	10-Jan-15 001	001	306	2,3,7,8-TCDD		****	****	ı	****	1	0.12		0.12	
VA0004162	10-Feb-15 001	100	306	2,3,7,8-TCDD		*****	****		****	N. R.	0.12	X X	0.12	
VA0004162	10-Mar-15 001	100	306	2,3,7,8-TCDD	*	****	****		****	<ql< td=""><td>0.12</td><td>Å.</td><td>0.12</td><td></td></ql<>	0.12	Å.	0.12	
VA0004162	10-Apr-15 001	100	306	2,3,7,8-TCDD	*	*****	****	1	****	1	0.12		0.12	
VA0004162	10-Dec-15 001	100	306	2,3,7,8-TCDD	*	****	*****		****		0.12	ı	0.12	
VA0004162	10-Jan-10 001	001	307	2,3,7,8-TETRACHLORG-	*	****	****	1	****		*****	Ä.	¥.	
VA0004162	10-Feb-10 001	100	307	2,3,7,8-TETRACHLORG-	*	****	****	,	****		*****	S. S.	N.	
VA0004162	10-Mar-10 001	9	307	2,3,7,8-TETRACHLORG-	*	****	******		****		****	Ŷ J	Z Z	
VA0004162	10-Apr-10 001	100	307	2,3,7,8-TETRACHLORG-		*****	****	,	****		*****	1	N.	

Permit No	Due Date	outfall	pram	Parameter Description gavg	Lim-Avg qmax	c Lim-Max cmin	Lim-Min cavg	cavg	Lim-Avg cmax	сшах	Lim-Max	
VA0004162	10-Dec-10 001	100	307	2,3,7,8-TETRACHLORG-	*****	****	***	1	*****		귛	
VA0004162	10-Jan-11 001	2	307	2,3,7,8-TETRACHLORG-	****	* * * * * * * * * * * * * * * * * * * *	****	ı	*****		뉠	
VA0004162	10-Feb-11 001	8	307	2,3,7,8-TETRACHLORG-	******	****	****		****	Ä.	- Ja	
VA0004162	10-Mar-11 001	100	307	2,3,7,8-TETRACHLORG-	******	***	*****	ı	*****	å	<u> </u>	
VA0004162	10-Apr-11 001	8	307	2,3,7,8-TETRACHLORG-	******	****	****		*****		N.	
VA0004162	10-Dec-11 001	9	307	2,3,7,8-TETRACHLORG-	******	*****	****		****		¥	
VA0004162	10-Jan-12 001	90	307	2,3,7,8-TETRACHLORG-	*****	****	***	1	**		륄	
VA0004162	10-Feb-12 001	100	307	2,3,7,8-TETRACHLORG-	**	****	****		****	Ä.	Z Z	
VA0004162	10-Mar-12 001	001	307	2,3,7,8-TETRACHLORG-	****	* * * * * * * * * * * * * * * * * * * *	****		****	9	Z Z	
VA0004162	10-Apr-12 001	100	307	2,3,7,8-TETRACHLORG-	**	****	*****		***		N.	
VA0004162	10-Dec-12 001	100	307	2,3,7,8-TETRACHLORG-	*****	****	****	,	****		뉟	
VA0004162	10-Jan-13 001	700	307	2,3,7,8-TETRACHLORG-	*****	*****	****		****		N.	
VA0004162	10-Feb-13 001	100	307	2,3,7,8-TETRACHLORG-	****	* * * * * * * * * * * * * * * * * * * *	****		***	A.	¥	
VA0004162	10-Mar-13 001	100	307	2,3,7,8-TETRACHLORG-	***	****	****		***	å	Z Z	
VA0004162	10-Apr-13 001	100	307	2,3,7,8-TETRACHLORG-	***	*****	****	,	****		¥	
VA0004162	10-Dec-13 001	001	307	2,3,7,8-TETRACHLORG-	*****	*****	**		****		뉟	
VA0004162	10-Jan-14 001	004	307	2,3,7,8-TETRACHLORG-	****	*****	*****		****		<u> </u>	
VA0004162	10-Feb-14 001	8	307	2,3,7,8-TETRACHLORG-	******	*****	****		***	Ä	N N	

•

— т	Т				· 1	—	1	T	Т			т	—-т	T			т	
Lim-Max	N.	N.	Z.	뉳	Z Z	¥	N.	NL	158	158	158	158	158	158	158	158	158	158
cmax	Δ <u>ρ</u>	-			N N	å			12	13	თ		1		Α̈́	7		
Lim-Avg	****	****	*****	****	*****	*****	***	****	79	79	79	79	79	79	79	79	79	79
cavg		,	1		,		1		5	ი	8		ı		å	2	ı	1
Lim-Avg qmax Lim-Max cmin Lim-Min cavg Lim-Avg cmax	***	*****	***	****	****	****	****	****	****	****	*****	*****	****	**	****	****	****	***
cmin		,			1		,		ŧ		ı							
Lim-Max	****	*****	****	*****	*****	*****	****	*****	****	*****	****	****	*****	*****	*****	****	****	***
qmax	-								s 1				•				-	
Lim-Avg	*****	*****	****	****	****	****	****	*****	****	****	****	*******	*****	****	*******	*****	*****	*****
									ı	1		ı						
Parameter Description qavg	2,3,7,8-TETRACHLORG-	2,3,7,8-TETRACHLORG-	2,3,7,8-TETRACHLORG	2,3,7,8-TETRACHLORG-	2,3,7,8-TETRACHLORG	2,3,7,8-TETRACHLORG	2,3,7,8-TETRACHLORG	2,3,7,8-TETRACHLORG	BOD5, NOV-MAR	BOD5, NOV-MAR	BODS, NOV-MAR		BOD5, NOV-MAR					
104/14/15	307	307	307	307	307	307	307	307	381	381	381	381	381	381	381	381	381	381
outfall pram	9	100	200	100	100	9	001	001	001	001	200	100	100	100	001	904	6	90
Due Date	10-Mar-14 001	10-Apr-14 001	10-Dec-14 001	10-Jan-15 001	10-Feb-15 001	10-Mar-15 001	10-Apr-15 001	10-Dec-15 001	10-Jan-10 001	10-Feb-10 001	10-Mar-10 001	10-Apr-10 001	10-Dec-10 001	10-Jan-11 001	10-Feb-11 001	10-Mar-11 001	10-Apr-11 001	10-Dec-11 001
Permit No	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162

Permit No	Due Date	outfall	pram	Parameter Description qavg		Lim-Avg qmax	444000000000000000000000000000000000000	Lim-Max cmin	Lim-Min cavg	cavg	Lim-Avg cmax	cmax	Lim-Max	
VA0004162	10-Jan-12 001	100	381	BOD5, NOV-MAR	ı	****	****		*****		62		158	
VA0004162	10-Feb-12 001	8	384	BOD5, NOV-MAR		*****	****		****	άρ	79	å	158	
VA0004162	10-Mar-12 001	9	384	BODS, NOV-MAR		****	****		*****	е	79	8	158	
VA0004162	10-Apr-12 001	100	384	BOD5, NOV-MAR		****	****		****		79		158	
VA0004162	10-Dec-12 001	60	384	BOD5, NOV-MAR		*****	***		*****		127		254	
VA0004162	10-Jan-13 001	100	384	BODS, NOV-MAR		****	****		****		127		254	
VA0004162	10-Feb-13 001	004	381	BOD5, NOV-MAR	1	*****	****	1	****	7	127	თ	254	
VA0004162	10-Mar-13 001	904	381	BOD5, NOV-MAR		****	****	1	****	9	127	7	254	
VA0004162	10-Apr-13 001	9	381	BOD5, NOV-MAR		*****	*****		***	,	127		254	
VA0004162	10-Dec-13 001	8	384	BOD5, NOV-MAR		*****	****	•	****		127		254	
VA0004162	10-Jan-14 001	8	381	BOD5, NOV-MAR		****	****		****		127	1	254	
VA0004162	10-Feb-14 001	100	381	BOD5, NOV-MAR	E	*****	****		*****	2	127	9	254	
VA0004162	10-Mar-14 001	90	381	BOD5, NOV-MAR		*****	*****		****	16	127	23	254	
VA0004162	10-Apr-14 001	90	384	BOD5, NOV-MAR		****	****	ı	****	ı	127		254	
VA0004162	10-Dec-14 001	9	384	BOD5, NOV-MAR	,	****	****		*****		127		254	
VA0004162	10-Jan-15 001	9	381	BOD5, NOV-MAR		****	**	<u>.</u>	*****	ı	127		254	
VA0004162	10-Feb-15 001	904	384	BOD5, NOV-MAR	,	***	****		***	4	127	6	254	
VA0004162	10-Mar-15 001	8	381	BOD5, NOV-MAR		***	****		*****	7	127	- 8	254	

Permit No	Due Date	outfall	pram	Parameter Description qavg		Lim-Avg qmax	x Lim-Max cmin	100000000000000000000000000000000000000	Lim-Min cavg		Lim-Avg cmax	cmax	Lim-Max	
VA0004162	10-Apr-15 001	100	381	BOD5, NOV-MAR		* ******	****	ſ	*****	,	127	t	254	
VA0004162	10-Dec-15 001	001	381	BOD5, NOV-MAR		****	****	,	****		127	ı	254	
VA0004162	10-Jan-10 001	90	422	TSS, NOV-MAR	1	*****	*****	,	****	7	153	16.8	306	
VA0004162	10-Feb-10 001	99	422	TSS, NOV-MAR		*****	****		*****	9.7	153	11.9	306	
VA0004162	10-Mar-10 001	8	422	TSS, NOV-MAR		****	*****		****	13	153	18	306	
VA0004162	10-Apr-10 001	004	422	TSS, NOV-MAR		****	****		*****	,	153		306	
VA0004162	10-Dec-10 001	90	422	TSS, NOV-MAR	1	****	****		****	1	153	ı	306	
VA0004162	10-Jan-11 001	100	422	TSS, NOV-MAR	,	****	****	1	****		153	,	306	
VA0004162	10-Feb-11 001	100	422	TSS, NOV-MAR	1	****	****		****	5.9	153	8.2	306	
VA0004162	10-Mar-11 001	9	422	TSS, NOV-MAR	1	****	****		****	9.9	153	8.4	306	
VA0004162	 10-Apr-11 001	100	422	TSS, NOV-MAR		*****	****	t	****	1	153		306	
VA0004162	10-Dec-11 001	100	422	TSS, NOV-MAR		*****	*****	1	****	-	153		306	
VA0004162	10-Jan-12 001	100	422	TSS, NOV-MAR		*****	****		****	,	153	,	306	
VA0004162	10-Feb-12 001	100	422	TSS, NOV-MAR		*****	****		******	4.3	153	6.0	306	
VA0004162	10-Mar-12 001	100	422	TSS, NOV-MAR	-	****	*****		****	51	153	146	306	
VA0004162	10-Apr-12 001	100	422	TSS, NOV-MAR		****	****	1	*******	1	153		306	
VA0004162	10-Dec-12 001	98	422	TSS, NOV-MAR		****	*****	,	****	1	261	ı	522	
VA0004162	10-Jan-13 001	004	422	TSS, NOV-MAR		****	*****		*****	ı	261	1	522	

Permit No	Due Date	outfall	pram	Parameter Description gavg		Lim-Avg qmax	x Lim-Max cmin	cmin	Lim-Min cavg		Lim-Avg cmax	стах	Lim-Max	
VA0004162	10-Feb-13 001	100	422	TSS, NOV-MAR		*****	****		****		261	7.4	522	
VA0004162	10-Mar-13 001	5	422	TSS, NOV-MAR		****	****		****	8	261	6	522	
VA0004162	10-Apr-13 001	5	422	TSS, NOV-MAR		****	****	1	****		261		522	
VA0004162	10-Dec-13 001	001	422	TSS, NOV-MAR		****	***		****		261		522	
VA0004162	10-Jan-14 001	93	422	TSS, NOV-MAR	*	***	****		*****	1	261		522	
VA0004162	10-Feb-14 001	100	422	TSS, NOV-MAR	*	******	** ** ** **	1	*****	6.2	261	7.5	522	
VA0004162	10-Mar-14 001	9	422	TSS, NOV-MAR		*****	****		***	16	261	20	522	
VA0004162	10-Apr-14 001	004	422	TSS, NOV-MAR		******	****		****	,	261	1	522	
VA0004162	10-Dec-14 001	001	422	TSS, NOV-MAR		****	****		****	1	261	ı	522	
VA0004162	10-Jan-15 001	001	422	TSS, NOV-MAR	*	****	**	1	****	ı	261		522	
VA0004162	10-Feb-15 001	001	422	TSS, NOV-MAR	*	****	****		****	5.7	261	8.7	522	
VA0004162	10-Mar-15 001	001	422	TSS, NOV-MAR		*******	****		****	12	261	17	522	
VA0004162	10-Apr-15 001	001	422	TSS, NOV-MAR	*	****	****	ı	*****	ı	261	3	522	
VA0004162	10-Dec-15 001	100	422	TSS, NOV-MAR	*	****	****	1	***		261		522	
VA0004162	10-Jan-10 001	100	633	BOD5 **6	*	******** 0.13	4.4	1	****	1	****	ı	****	
VA0004162	10-Feb-10 001	001	633	BOD5 **6	*	******* 0.40	4.4		****	,	***	1	****	
VA0004162	10-Mar-10 001	001	633	BOD5 **6	*	******* 0.505	4.4		*****		*****		****	
VA0004162	10-Apr-10 001	901	633	BOD5 **6	*	******	4.4		******		******	4	*****	

							1441		144.65		13000				
Permit No	Due Date	outfall	bram	Parameter Description qavg	davg	Lim-Avg qmax		Lim-Max cmin	5166	Lim-Min cavg	333	Lim-Avg cmax	сшах	Lim-Max	
VA0004162	10-Dec-10 001	20	633	BOD5 **6	t	****		4.4		*****		****		****	
VA0004162	10-Jan-11 001	100	633	BOD5 **6		*****		4.4		****		****		***	
VA0004162	10-Feb-11 001	F	633	BOD5 **6	1	0 ******		4.4		******	1	****		****	
VA0004162	10-Mar-11 001	9	633	BOD5 **6	1	0 ******	0.008	4.4		****		*****		*****	
VA0004162	10-Apr-11 001	8	633	BOD5 **6		*****		4.4		****		****		****	
VA0004162	10-Dec-11 001	100	633	BOD5 **6		******		4.4		*****		*****		****	
VA0004162	10-Jan-12 001	8	633	BOD5 **6	,	* * * * * * * * * * * * * * * * * * * *		4.4		****	1	*****	t	****	
VA0004162	10-Feb-12 001	100	633	BOD5 **6	,	0 ******		4.4		*****		****		****	
VA0004162	10-Mar-12 001	8	633	BOD5 **6	1	0 *******	0.010	4.4		*****		****	,	****	
VA0004162	10-Apr-12 001	200	633	BOD5 **6	1	****		4.4		****		***		****	
VA0004162	10-Dec-12 001	100	633	BOD5 **6	ŧ	****		4.4		****	1	****		****	
VA0004162	10-Jan-13 001	001	633	BOD5 **6		******		4.4		*****	1	****		****	
VA0004162	10-Feb-13 001	100	633	BOD5 **6		0 *******	0.04	4.4		****	,	****	1	****	
VA0004162	10-Mar-13 001	100	633	BOD5 **6		0 ******	0.11	4.4		****	ı	****	ŧ	****	
VA0004162	10-Apr-13 001	100	633	BOD5 **6	,	******		4.4		****	,	*****	1	****	
VA0004162	10-Dec-13 001	100	633	BOD5 **6	,	*****		4.4		****	1	****		****	
VA0004162	10-Jan-14 001	90	633	BOD5 **6	,	****		4.4		****	,	***		****	-40
VA0004162	10-Feb-14 001	9	633	BOD5 **6		0 ******	0.04	4.4		*****		*****		****	

Due Date	outfall	pram	Parameter Description qavg		Lim-Avg qmax	qmax	Lim-Max cmin	cmin	Lim-Min cavg	cavg	Lim-Avg cmax	сшах	Lim-Max	
10-Mar-14 001	5	633	BOD5 **6		****	0.26	4.4	1	****		****		****	·
10-Apr-14 001	90	633	BOD5 **6		****	3	4.4	ŧ	****		***		****	
10-Dec-14 001	100	633	BOD5 **6		****		4.4	1	****		*****	,	*****	
10-Jan-15 001	9	633	BOD5 **6		****	1	4.4		****		*****		*****	
10-Feb-15 001	004	633	BOD5 **6		*****	0.11	4.4		****	,	****		***	
10-Mar-15 001	99	633	BOD5 **6		****	0.19	4.4		****		****		****	
10-Apr-15 001	9	633	BOD5 **6	-	****	1	4.4		*****		****		****	
10-Dec-15 001	90-1	633	BOD5 **6		****	ŧ	4.4	,	*****		*****		*****	
10-Jan-10 001	994	634	TSS **6		****	0.23	2.88		****		***		****	
10-Feb-10 001	9	634	- 1.SS **6		****	0.53	2.88		****		****		****	
10-Mar-10 001	001	634	TSS **6		*****	0.675	2.88		****		****		****	
10-Apr-10 001	001	634	- 9** SST		****		2.88	1	****		****		***	
10-Dec-10 001	100	634	TSS **6		****	ŧ	2.88	,	*****		*****	-	***	
10-Jan-11 001	100	634	TSS **6		****	t	2.88	1	****		*****		*****	
10-Feb-11 001	100	634	TSS **6		****	0.03	2.88		****		****	ı	****	
10-Mar-11 001	001	634	TSS **6		****	90.0	2.88	,	****	. ,	****		****	
10-Apr-11 001	9	634	TSS **6		****		2.88	1	****		***		*****	
10-Dec-11 001	004	634	TSS **6		****	1	2.88	ı	****		****		****	

Мах	***	**	**	***	**	***	***	**	**	***	***	**	***	**	***		***	* * *
cmax Lim-Max	****	*****	****	*****	****	****	**	****	****	****	****	****	****	***	****	•••	*****	* * * * * * * * * * * * * * * * * * * *
Lim-Avg c	****	****	*****	****	*****	***	*****	****	*****	*****	****	*****	*****	*****	****		******	
cavg			ī	1		2	1		ī	ı	1		1			_		Ì
Lim-Min	****	****	*****	*****	******	*****	*****	*****	*****	*****	*****	*****	******	***	****		*****	* * * * * * * * * * * * *
cmin			,	,			,						,	,			ı	
Lim-Max cmin	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88		2.88	2.88
qmax		0.02	0.21	1			0.14	0.21			1	0.15	0.35	•				-
Lim-Avg qmax	*****	******	*****	****	******	****	*****	****	******	*****	****	******* 0.15	*****	****	****		*******	
qavg	1	ı.		1		1	ŧ	ŧ	ı	1	ı	ı	1	1	4		9	,
Parameter Description qavg	TSS **6	TSS **6	TSS **6	TSS **6	1SS **6	TSS **6		TSS **6	TSS **6									
pram	634	634	634	634	634	634	634	634	634	634	634	634	634	634	634		634	634
outfall	56	204	204	204	204	204	201	204	둳	301	ž	26	301	301	301		001	900
Due Date	10-Jan-12 001	10-Feb-12 001	10-Mar-12 001	10-Apr-12 001	10-Dec-12 001	10-Jan-13 001	10-Feb-13 001	10-Mar-13 001	10-Apr-13 001	10-Dec-13 001	10-Jan-14 001	10-Feb-14 001	10-Mar-14 001	10-Apr-14 001	10-Dec-14 001		10-Jan-15 001	10-Jan-15 001
Permit No	VA0004162		VA0004162	VA0004162														

Permit No	Due Date	outfall	pram	Parameter Description qavg		Lim-Avg qmax	dmax	Lim-Max cmin	14.004.000	Lim-Min cavg	cavg	Lim-Avg cmax	сшах	Lim-Max	
VA0004162	10-Apr-15 001	8	634	TSS **6		*****		2.88		****		****		****	
VA0004162	10-Dec-15 001	9	634	TSS **6		****	,	2.88	,	*****	1	****	1	*****	
VA0004162	10-Jan-10 001	8	635	AMMONIA AS N **6	0.01	0.22	0.01	0.32		*****		****		****	
VA0004162	10-Feb-10 001	100	635	AMMONIA AS N **6	0.007	0.22	0.018	0.32		****		****	1	******	
VA0004162	10-Mar-10 001	100	635	AMMONIA AS N **6	0.004	0.22	0.022	0.32		****	L	*****		****	
VA0004162	10-Apr-10 001	00	635	AMMONIA AS N **6	ı	0.22	ŧ	0.32		****	1	****	,	****	
VA0004162	10-Dec-10 001	9	635	AMMONIA AS N **6	ı	0.22	r	0.32		****		****		*****	
VA0004162	10-Jan-11 001	100	635		1	0.22	,	0.32	1	****	1	****	1	****	
VA0004162	10-Feb-11 001	100	635	AMMONIA AS N **6	0.002	0.22	0.002	0.32		****	,	****	1	****	
VA0004162	10-Mar-11 001	100	635	AMMONIA AS N **6	0.003	0.22	0.005	0.32		***		*****		****	
VA0004162	10-Apr-11 001	100	635	AMMONIA AS N **6		0.22	t	0.32		****		****		****	
VA0004162	10-Dec-11 001	100	635	AMMONIA AS N **6	1	0.22		0.32		****		*****	ı	****	
VA0004162	10-Jan-12 001	20	635	AMMONIA AS N **6	1	0.22	1	0.32		****	1	*****		****	
VA0004162	10-Feb-12 001	100	635	AMMONIA AS N **6	0.004	0.22	0.004	0.32		****	1	*****	,	****	
VA0004162	10-Mar-12 001	100	635	AMMONIA AS N **6	0.001	0.22	0.006	0.32	4	****		***	,	****	
VA0004162	10-Apr-12 001	100	635	AMMONIA AS N **6	1	0.22	ı	0.32		****	1	****		****	
VA0004162	10-Dec-12 001	100	635	AMMONIA AS N **6	1	0.22	ſ	0.32	1	***		*****		*****	
VA0004162	10-Jan-13 001	9	635	AMMONIA AS N **6	ī	0.22	•	0.32		****	1	*****		*****	

Lim-Max	*****	****	*****	*****	****	******	****	****	****	****	*****	*****	****	****	****	*****	****	
cmax					-			ı	,		•		1	•		,		
Lim-Avg cmax	****	***	****	****	****	****	****	*****	****	****	****	*****	*****	*****	*****	*****	*****	
cavg	3		1				1	1	ı		,		1					
Lim-Min cavg	****	****	*****	****	****	*****	*****	****	*****	****	****	******	****	****	****	****	****	
cmin							1	•	4		ı	1	,	-	,			
Lim-Max cmin	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.2	0.2	0.2	
qmax	0.005	0.005				0.009	0.01		t		0.02	0.022			0.03	0.066	0.077	
Lim-Avg qmax	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	******) ******	******	
qavg	0.005	0.0002	,			0.009	0.0	_			0.02	0.002						
Parameter Description qavg	AMMONIA AS N **6	PHOSPHORUS,TOTAL-	PHOSPHORUS,TOTAL-	PHOSPHORUS,TOTAL-														
pram	635	635	635	635	635	635	635	635	635	635	635	635	635	635	636	636	636	
outfall	8	8	904	8	200	150	904	004	904	901	9	100	99	60	100	9	100	
Due Date	10-Feb-13 001	10-Mar-13 001	10-Apr-13 001	10-Dec-13 001	10-Jan-14 001	10-Feb-14 001	10-Mar-14 001	10-Apr-14 001	10-Dec-14 001	10-Jan-15 001	10-Feb-15 001	10-Mar-15 001	10-Apr-15 001	10-Dec-15 001	10-Jan-10 001	10-Feb-10 001	10-Mar-10 001	
Permit No	VA0004162	VA0004162	VA0004162															

П	 T	——————————————————————————————————————	T	- 1		—т		T										
Lim-Max	****	*****	****	****	****	****	*****	****	****	****	****	****	****	*****	****	****	*****	*****
сшах									ı	,		,	ı					,
Lim-Avg cmax	****	****	****	*****	*****	****	*****	*****	*****	****	*****	****	****	****	****	*****	****	***
cavg	Į.		t	t	1	,	1	ı	1		5	•	1	ŧ			,	
Lim-Min cavg	****	****	****	****	****	***	*****	*****	****	****	****	*****	*****	****	****	****	*****	****
cmin	,	,					1	ı	1	1	ı	1	ı		t	ŧ	ı	ı
Lim-Max cmin	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
qmax			0.007	0.015			-	0.004	0.007		,		0.02	0.03			•	0.025
Lim-Avg qmax	****	****	****	****	****	****	*****	****	****	******	*****	******	****	*****	*****	******	******	****
qavg	•						•							•				
Parameter Description gavg	PHOSPHORUS, TOTAL	PHOSPHORUS, TOTAL	PHOSPHORUS, TOTAL	PHOSPHORUS, TOTAL	PHOSPHORUS,TOTAL	PHOSPHORUS, TOTAL	PHOSPHORUS, TOTAL	PHOSPHORUS, TOTAL	PHOSPHORUS,TOTAL	PHOSPHORUS,TOTAL	PHOSPHORUS, TOTAL.	PHOSPHORUS, TOTAL						
pram	636	636	636	636	636	636	636	636	636	636	636	636	636	636	636	636	636	636
outfall	500	100	8	8	5	904	100	004	004	001	200	001	001	001	100	100	100	93
Due Date	10-Dec-10 001	10-Jan-11 001	10-Feb-11 001	10-Mar-11 001	10-Apr-11 001	10-Dec-11 001	10-Jan-12 001	10-Feb-12 001	10-Mar-12 001	10-Apr-12 001	10-Dec-12 001	10-Jan-13 001	10-Feb-13 001	10-Mar-13 001	10-Apr-13 001	10-Dec-13 001	10-Jan-14 001	10-Feb-14 001
Permit No	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162

rermit No	Due Date	outfall	pram	Parameter Description qavg		Lim-Avg qmax	Lim-Max cmin	-3144-41	Lim-Min cavg	1 1 2 C S () C S ()	Lim-Avg cmax	стах	Lim-Max	
VA0004162	10-Mar-14 001	100	636	PHOSPHORUS,TOTAL-	*****	*** 0.04	0.2		*****		****		****	
VA0004162	10-Apr-14 001	100	636	PHOSPHORUS,TOTAL-	****	*	0.2		******		****		*****	
VA0004162	10-Dec-14 001	904	636	PHOSPHORUS,TOTAL-	*****	*	0.2		******		****		*****	·
VA0004162	10-Jan-15 001	100	636	PHOSPHORUS, TOTAL-	*****	**	0.5		******	I	****		****	
VA0004162	10-Feb-15 001	99	636	PHOSPHORUS,TOTAL-	*****	0.04	0.2		*****		*****		****	
VA0004162	10-Mar-15 001	100	636	PHOSPHORUS,TOTAL-	****	90.00	0.2	1	****		*****		*****	
VA0004162	10-Apr-15 001	9	636	PHOSPHORUS, TOTAL -	***	*	0.2	1	****	,	*****		****	
VA0004162	10-Dec-15 001	100	636	PHOSPHORUS, TOTAL -	****	**	0.2	1	*****		******		*****	
VA0004162	10-Jan-10 001	001	637	2,3,7,8-TCDD **-5	****	* N N	1.1		****		****		***	
VA0004162	10-Feb-10 001	8	637	2,3,7,8-TCDD **-5	***	** NR	7:	*	*****		*****		****	
VA0004162	10-Mar-10 001	8	637	2,3,7,8-TCDD **-5	****	0	1.1		****		****		***	
VA0004162	10-Apr-10 001	8	637	2,3,7,8-TCDD **-5	****	*	7.	*	****		****		****	
VA0004162	10-Dec-10 001	9	637	2,3,7,8-TCDD **-5	***	**	7:		*****		******		****	
VA0004162	10-Jan-11 001	8	637	2,3,7,8-TCDD **-5	****	*	7-		*****		******		****	
VA0004162	10-Feb-11 001	100	637	2,3,7,8-TCDD **-5	****	* NR	£.		*****		****		****	
VA0004162	10-Mar-11 001	8	637	2,3,7,8-TCDD **-5	****	0 **	1.1		****		****		****	
VA0004162	10-Apr-11 001	2	637	2,3,7,8-TCDD **-5	****	**	£.		*****		****	1	*****	
VA0004162	10-Dec-11 001	8	637	2,3,7,8-TCDD **-5	****	**	1.1	*	****	,	****		****	

Permit No	Due Date	outfall	pram	Parameter Description gavg		Lim-Avg qmax	Lim-Max cmin	cmin	Lim-Min	cavg	Lim-Min cavg Lim-Avg cmax	сшах	Lim-Max	
VA0004162	10-Jan-12 001	001	637	2,3,7,8-TCDD **-5	**	***	7.		*****		******		* * * * * * * * * * * * * * * * * * * *	
VA0004162	10-Feb-12 001	9	637	2,3,7,8-TCDD **-5	****	** RN	- -	ı	****		****		*****	
VA0004162	10-Mar-12 001	100	637	2,3,7,8-TCDD **-5	****	0 ***	7	1	****		***		****	
VA0004162	10-Apr-12 001	198	637	2,3,7,8-TCDD **-5	****	**	-	,	*****		****		****	
VA0004162	10-Dec-12 001	5	637	2,3,7,8-TCDD **-5	****	* *	1.1	,	****		****		*****	
VA0004162	10-Jan-13 001	90	637	2,3,7,8-TCDD **-5	****	* *	1.1		*****		*****		*****	
VA0004162	10-Feb-13 001	100	637	2,3,7,8-TCDD **-5	****	** RN	-	ī	*****	,	****		****	
VA0004162	10-Mar-13 001	100	637	2,3,7,8-TCDD **-5	***	0 ***	7.	ı	****	1	*****		****	
VA0004162	10-Apr-13 001	8	637	2,3,7,8-TCDD **-5	****	*	7.	1	****	,	****		****	
VA0004162	10-Dec-13 001	8	637	2,3,7,8-TCDD **-5	****	* *	1.7		****	ı	****		*****	
VA0004162	10-Jan-14 001	904	637	2,3,7,8-TCDD **-5	****	* *	1.1	1	*****	1	*****	1	*****	
VA0004162	10-Feb-14 001	001	637	2,3,7,8-TCDD **-5	****	** NR	1.1	,	****	ſ	****	ı	****	
VA0004162	10-Mar-14 001	100	637	2,3,7,8-TCDD **-5	***	0 ***	7:		*****		****		****	
VA0004162	10-Apr-14 001	004	637	2,3,7,8-TCDD **-5	****	*	7:7	,	****		*****	ı	****	
VA0004162	10-Dec-14 001	100	637	2,3,7,8-TCDD **-5 -	****	*			****		*****		****	
VA0004162	10-Jan-15 001	90	637	2,3,7,8-TCDD **-5 -	****	<u>.</u> *	1.1	,	*****	_	******		****	
VA0004162	10-Feb-15 001	90	637	2,3,7,8-TCDD **-5	****	* NR	1.1	1	*****		*****	ı	****	
VA0004162	10-Mar-15 001	100	637	2,3,7,8-TCDD **-5	****		1.1		*****		****		****	

Permit No	Due Date	outfall	pram	Parameter Description gavg		Lim-Avg qmax	150000000000000000000000000000000000000	cmin	Lim-Max cmin Lim-Min cavg Lim-Avg cmax Lim-Max	cavg	Lim-Avg	стах	Lim-Max	
VA0004162	10-Apr-15 001	9		1	1 1	*****	1 I		****		****	1	***	
VA0004162	10-Dec-15 001	90	637	2,3,7,8-TCDD **-5		****	1.1	·	***		*****		****	
VA0004162	10-Jan-10 001	90 F	638	2,3,7,8-TCDF **-5		******** NR	_ K	1	****		*****	t	****	
VA0004162	10-Feb-10 001	100	638	2,3,7,8-TCDF **-5		N NR	岁	1	******	,	*****		*****	
VA0004162	10-Mar-10 001	904	638	2,3,7,8-TCDF **-5		0 *******	뉠		****		****		****	
VA0004162	10-Apr-10 001	8	638	2,3,7,8-TCDF **-5	ı	*****	Z Z		******		*****		*****	
VA0004162	10-Dec-10 001	8	638	2,3,7,8-TCDF **-5		****	Ŗ		*****		****	1	****	
VA0004162	10-Jan-11 001	100	638	2,3,7,8-TCDF **-5	1	1 ***** ** **	Ä	ı	*****	ı	****		****	
VA0004162	10-Feb-11 001	100	638	2,3,7,8-TCDF **-5	1	******** NR	Z		****	,	****	1	****	
VA0004162	10-Mar-11 001	100	638	2,3,7,8-TCDF **-5		0 *******	N N	t	****	ı	****	ı	****	
VA0004162	10-Apr-11 001	<u> </u>	638			*****	<u> </u>		****	ı	****	•	*****	
VA0004162	10-Dec-11 001	90	638			****	Z	ı	*****	ı	*****	,	****	
VA0004162	10-Jan-12 001	004	638	2,3,7,8-TCDF **-5		****	귈		****	1	****	1	****	
VA0004162	10-Feb-12 001	100	638	2,3,7,8-TCDF **-5		******** NR	귛	£	****		****		****	
VA0004162	10-Mar-12 001	100	638	2,3,7,8-TCDF **-5		0 ******	Ŋ		****	1	****	1	*****	
VA0004162	10-Apr-12 001	99	638	2,3,7,8-TCDF **-5		*****	N N		****	,	***	,	****	
VA0004162	10-Dec-12 001	904	638	2,3,7,8-TCDF **-5		****	¥		****		****		*****	
VA0004162	10-Jan-13 001	100	638	2,3,7,8-TCDF **-5		*****	귛		****		****		***	

Permit No	Due Date	outfall	pram	Parameter Description qavg		n-Avg qr	nax	Lim-Avg qmax Lim-Max cmin Lim-Min cavg Lim-Avg cmax Lim-Max		n-Min	avg	im-Avg	стах	Lim-Max	
VA0004162	10-Feb-13 001	201	638	2,3,7,8-TCDF **-5	***	******** NR	N N		*	*****		*****		*****	
VA0004162	10-Mar-13 001	100	638	2,3,7,8-TCDF **-5	**	0 *******	뉟		*	*****	*	*****		*****	
VA0004162	10-Apr-13 001	100	638	2,3,7,8-TCDF **-5	***	******	뉳		*	****	*	*****		****	
VA0004162	10-Dec-13 001	904	638	2,3,7,8-TCDF **-5	***	*****	귈		*	******		****		******	
VA0004162	10-Jan-14 001	200	638	2,3,7,8-TCDF **-5	***	*****	Z	<u>- 1</u>	*	*****		*****	,	*****	
VA0004162	10-Feb-14 001	<u>8</u>	638	2,3,7,8-TCDF **-5	* *	*******	묎		*	****		*****		*****	
VA0004162	10-Mar-14 001	504	638	2,3,7,8-TCDF **-5	**	0 *******	N N		* *	****	*	******		*****	
VA0004162	10-Apr-14 001	700	638	2,3,7,8-TCDF **-5 -	* * *	*****	뉟		* *	****	*	*****		****	
VA0004162	10-Dec-14 001	Š	638	2,3,7,8-TCDF **-5	* * *	****	뒫		*	****	*	****		****	
VA0004162	10-Jan-15 001	707	638	2,3,7,8-TCDF **-5	* * *	****	귈		*	****		****	ŝ	****	
VA0004162	10-Feb-15 001)01	638	2,3,7,8-TCDF **-5	**	******** NR	R NL	<u>.</u>	*	*****	*	*****	1	*****	
VA0004162	10-Mar-15 001	201	638	2,3,7,8-TCDF **-5	**	0 ******	N N		**	******	*	******		******	
VA0004162	10-Apr-15 001	201	638	2,3,7,8-TCDF **-5	* * *	****	귛		*	****	*	*****		****	
VA0004162	10-Dec-15 001	ĕ	638	2,3,7,8-TCDF **-5	* * *	****	귛	-	**	****	*	*****	ī	****	
VA0004162	10-Jan-10 001	201	737	AOX (Adsorbable Orga 18713	3713 NL		18713 72	723000 -	*	0 *******	0.550 133	33	0.550	280	
VA0004162	10-Feb-10 001	94	737	AOX (Adsorbable Orga 15756	5756 NL		34468 72	723000 -	*	0 *******	0.537 1	133	0.537	280	
VA0004162	10-Mar-10 001	201	737	AOX (Adsorbable Orga 6621	321 NL		41089 72	723000 -	*	0 *******	0.522 1	133	0.522	280	
VA0004162	10-Apr-10 001	201	737	AOX (Adsorbable Orga-	Į.	- (<u> </u>	723000 -	*	*****		133	,	280	

Permit No	Due Date	outfall	pram	Parameter Description qavg	573 (1865)	Lim-Avg qmax	100000000000000000000000000000000000000	Lim-Max cmin	100000000000	Lim-Min cavg	Lim-Avg cmax	cmax	Lim-Max	
VA0004162	10-Dec-10 001	100	737	AOX (Adsorbable Orga-	불		72	723000 -	****		133		280	
VA0004162	10-Jan-11 001	100	737	AOX (Adsorbable Orga-	Z		72	723000 -	*****		133		280	
VA0004162	10-Feb-11 001	200	737	AOX (Adsorbable Orga 898	NF NF	868		723000 -	****	0.144 133	133	0.144	280	
VA0004162	10-Mar-11 001	100	737	AOX (Adsorbable Orga 753	33 NL	1635		723000 -	***	0.117	133	0.117	280	
VA0004162	10-Apr-11 001	69	737	AOX (Adsorbable Orga-	뢰	_	72	723000 -	****	- 1	133	,	280	
VA0004162	10-Dec-11 001	1001	737	AOX (Adsorbable Orga-	귛	1	72	723000 -	****		133		280	
VA0004162	10-Jan-12 001	8	737	AOX (Adsorbable Orga-	Z Z	1	72	723000 -	****		133		280	
VA0004162	10-Feb-12 001	100	737	AOX (Adsorbable Orga427	77 N.	427		723000 -	*****	, 0.07	133	0.07	280	
VA0004162	10-Mar-12 001	9	737	AOX (Adsorbable Orga477	7 NL	904		723000 -	****	0.096	133	960.0	280	
VA0004162	10-Apr-12 001	8	737	AOX (Adsorbable Orga-	<u> </u>		72	723000 -	****		133	1	280	
VA0004162	10-Dec-12 001	100	737	AOX (Adsorbable Orga-	볼		72	723000 -	****		133		280	
VA0004162	10-Jan-13 001	904	737	AOX (Adsorbable Orga-	귈		72	723000 -	****		133		280	
VA0004162	10-Feb-13 001	200	737	AOX (Adsorbable Orga 9655	155 NL	9655		723000 -	****	0.370	133	0.370	280	
VA0004162	10-Mar-13 001	200	737	AOX (Adsorbable Orga 3477	177 NL		13132 72:	723000	***	0.330 133	133	0.330	280	
VA0004162	10-Apr-13 001	9	737	AOX (Adsorbable Orga-	귈		72.	723000 -	****		133		280	
VA0004162	10-Dec-13 001	100	737	AOX (Adsorbable Orga-	뉟		72:	723000 -	****		133		280	
VA0004162	10-Jan-14 001	904	737	AOX (Adsorbable Orga-	귈		72:	723000 -	*****		133		280	
VA0004162	10-Feb-14 001	000	737	AOX (Adsorbable Orga 22229	229 NL		22229 72:	723000 -	****	0.911 133	133	0.911	280	

Due Date	outfall	pram	Parameter Description gavg		Lim-Avg gmax	51 (416.5) AV	Lim-Max cmin	Lim-Min cavg	cavg	Lim-Avg cmax	сшах	Lim-Max
	10-Mar-14 001	737	AOX (Adsorbable Orga 13523	523 NL	35	35748 7	723000 -	****	1.19	133	1.19	280
4	10-Apr-14 001	737	AOX (Adsorbable Orga-	뉟			723000 -	****	_ ,	133		280
4	10-Dec-14 001	737	AOX (Adsorbable Orga-	╛	,		723000 -	****		133		280
10-Jan-15 001	100	737	AOX (Adsorbable Orga-	뉟			723000 -	****		133		280
10-Feb-15 001	901	737	AOX (Adsorbable Orga 34887	887 NL	34	34887 7	723000 -	* * * * * * * * * * * * * * * * * * * *		133	1.3	280
10-Mar-15 001	100	737	AOX (Adsorbable Orga 9958	N	4	44844 7	723000 -	****	8.0	133	7.	280
10-Apr-15 001	100	737	AOX (Adsorbable Orga-	뉟			723000 -	****		133	1	280
10-Dec-15 001	5	737	AOX (Adsorbable Orga-	뉟	,	7	723000 -	****		133	1	280
10-Jan-10 001	69	758	FLOW, SEASONAL -	* *	******* 4077	l	14000 -	****		****		****
10-Feb-10 001	190	758	FLOW, SEASONAL -	***	4******	7593 1	14000 -	****		***	,	***
10-Mar-10 001	100	758	FLOW, SEASONAL -	***	*******	9113 1	14000	****		****	,	***
10-Apr-10 001	901	758	FLOW, SEASONAL -	* *	****	4-	14000 -	****		****		***
10-Dec-10 001	99	758	FLOW, SEASONAL -	***	****	7	14000 -	****		****	1	****
10-Jan-11 001	9	758	FLOW, SEASONAL -	***	1 ****		14000 -	***		****	1	***
10-Feb-11 001	99.	758	FLOW, SEASONAL -	***	******* 734		14000	****	.	****	1	****
10-Mar-11 001	9	758	FLOW, SEASONAL -	***	.******* 15	1504	14000 -	**		****		*****
10-Apr-11 001	9	758	FLOW, SEASONAL -	**	****		14000 -	***		****		*****
10-Dec-11 001	901	758	FLOW, SEASONAL -	* *	****		14000 -	****		****		*****

S.

Permit No	Due Date	outfall	ргат	Parameter Description qavg		Lim-Avg qmax	Lim-Max cmin	251,646,000	Lim-Min cavg	100 100 100 100 100 100 100 100 100 100	Lim-Avg cmax	cmax	Lim-Max	
VA0004162	10-Jan-12 001	8	758	FLOW, SEASONAL -	****		14000 -		****		****		*****	
VA0004162	10-Feb-12 001	99-	758	FLOW, SEASONAL -	****	711	14000	*	*****		*****		*****	
VA0004162	10-Mar-12 001	99	758	FLOW, SEASONAL -	****	1306	14000 -	*	****		****		*****	
VA0004162	10-Apr-12 001	200	758	FLOW, SEASONAL -	****		14000	1	****		****	ı	*****	
VA0004162	10-Dec-12 001	8	758	FLOW, SEASONAL -	*****		14000	*	*****		****	ı	****	
VA0004162	10-Jan-13 001	100	758	FLOW, SEASONAL -	****	- 1	14000 -	*	****	1	****		****	
VA0004162	10-Feb-13 001	100	758	FLOW, SEASONAL -	****	2627	14000 -	*	* * * * * * * * * * * * * * * * * * * *		****	,	****	
VA0004162	10-Mar-13 001	904	758	FLOW, SEASONAL -	****	4389	14000	*	******		****	1	*****	
VA0004162	10-Apr-13 001	100	758	FLOW, SEASONAL -	****	1	14000 -	*	*****		****		*****	
VA0004162	10-Dec-13 001	100	758	FLOW, SEASONAL -	****	ı	14000 -	*	1 *****		****		****	
VA0004162	10-Jan-14 001	100	758	FLOW, SEASONAL -	****		14000 -	*	****		****	1	****	
VA0004162	10-Feb-14 001	100	758	FLOW, SEASONAL -	****	2924	14000 -	*	1 ****	*	****		*****	
VA0004162	10-Mar-14 001	2	758	FLOW, SEASONAL -	****	4285	14000 -	*	*****	*	****		***	
VA0004162	10-Apr-14 001	9	758	FLOW, SEASONAL -	*****	1	14000 -	*	****	*	****		****	
VA0004162	10-Dec-14 001	504	758	FLOW, SEASONAL -	****	1	14000 -	*	******		*****		*****	
VA0004162	10-Jan-15 001	994	758	FLOW, SEASONAL -	****		14000 -	*	*****	_*	*****		****	
VA0004162	10-Feb-15 001	8	758	FLOW, SEASONAL	*****	3747	14000 -	*	***		***		*****	
VA0004162	10-Mar-15 001	100	758	FLOW, SEASONAL -	*****	5149	14000 -	*	****	*	***		***	

VA0004162	10-Apr-15 001	9	758	FLOW, SEASONAL		*****		14000 -	**		*****		****	
Permit No	Due Date	outfall	pram		qavq	Lim-Avg gmax	description for a	Lim-Max cmin	ı Lim-Min cava	Cavq	Lim-Ava	спах	Lim-Max	
VA0004162	-15	904		FLOW, SEASONAL		****	1	14000 -	+		****		****	
VA0004162	10-Jan-10 103	103	004	FLOW	4.8	귈	2.1	N.	*****		****		******	
VA0004162	10-Feb-10 103	103	001	FLOW	1.78	N N	2.13	- N	****		****		****	
VA0004162	10-Mar-10 103	103	00	FLOW	1.73	귈	2.09	- N N	****		*****		***	
VA0004162	10-Apr-10 103	103	901	FLOW	1.57	귛	1.95		****		****		*****	
VA0004162	10-May-10 103	103	90	FLOW	1.89	귈	2.15	- N	*****		*****		****	
VA0004162	10-Jun-10 103	103	904	FLOW		뒫		- N	*****		*******		****	
VA0004162	10-Jul-10 103	103	004	FLOW	1	z		, NL	****		******	,	****	
VA0004162	10-Aug-10 103	103	004	FLOW		귈		». NL	****		****	1	*****	
VA0004162	10-Sep-10 103	103	901	FLOW		킬		, N	*****		****		************	
VA0004162	10-Oct-10 103	103	004	FLOW		Z Z		JE	****	ŧ	******		****	
VA0004162	10-Nov-10 103	103	9	FLOW		Z		N	****	ı	****		*****	
VA0004162	10-Dec-10 103	103	200	FLOW		z z		N.	****		****		****	
VA0004162	10-Sep-12 103	103	901	FLOW	2.71	J N	3.11	- - N	****	,	****		*****	
VA0004162	10-Oct-12 103	5	001	FLOW	2.86	J _Z	3.06	N.	****	1	****		****	
VA0004162	10-Nov-12 103	103	001	FLOW	2.84	N.	3.85	- - -	****		****		***	
VA0004162	10-Dec-12 103	103	001	FLOW	2.85	N	3.01	- N	*****		****		****	

VA0004162	10-Jan-13 103	103	90	FLOW	2.75	Ŋ.	2.89	' N N		****		****	2	******	
	Due Date	outfall	pram	Parameter Description qavg	qavg	Lim-Avg qmax	qmax	Lim-Max cmin		Lim-Min cavg		Lim-Avg cmax	2000 C. P. S. S. S. S. S.	Lim-Max	
	10-Feb-13 103	103	100	FLOW	2.56	ž	2.86	, N		****		*****		****	
	10-Mar-13 103	103	004	FLOW	2.76	뉟	2.94	12		*****		*****		****	
	10-Apr-13 103	103	004	FLOW	2.87	Į.	2.91	, N		****		*****	,	***	
	10-May-13 103	103	99	FLOW	2.81	ų.	2.92	- N		*****		*****	,	****	
	10-Jun-13 103	103	100	FLOW	2.85	z	2.90	ı L N		***		******		*****	
	10-Jul-13 103	103	904	FLOW	2.83	뉟	2.87	Z		****		****	1	*****	
	10-Aug-13 103	103	001	FLOW	2.80	뉟	2.87	- N		******		*****		****	
	10-Sep-13 103	103	001	FLOW	2.83	z z	2.90	N N		*****		*****		****	
+	10-Oct-13 103	103	904	FLOW	2.58	Z Z	2.83	J N		*****		*****		****	
	10-Nov-13 103	103	001	FLOW	2.72	Į Ž	2.90	, N L		*****		*****	1	*****	
	10-Dec-13 103	103	001	FLOW	2.90	Į.	3.13	ž		****		*****	1	****	
	10-Jan-14 103	103	001	FLOW	2.73	Ę,	2.90	ı N		****		****		****	
	10-Feb-14 103	20	001	FLOW	2.56	N.	2.86	N.		*****		*****		****	
	10-Mar-14 103	103	001	FLOW	2.76	N.	2.94	, L		****		*****	1	*****	
	10-Apr-14 103	103	60	FLOW	2.52	N N	2.59	ų.		****		****		****	
	10-May-14 103	103	00	FLOW	2.57	N.	2.81	Z		*****		*****		****	
	10-Jun-14 103	103	100	FLOW	2.65	N N	2.75	<u>.</u> Z	*	***	*	***		****	

		Π	I	Т	T									ŀ				***
													·					******************
******	Lim-Max	1	****	****	*****	****	****	**	****	****	****	*****	****	***	****	****	****	****
	сшах									ı					1	1	ı	1
****	Lim-Avg	****	*****	****	*****	****	***	****	****	****	****	****	****	****	****	*****	****	****
	cavg					,			1		ı				1	1	ı	
****	Lim-Min cavg	***	*****	****	*****	****	****	****	***	***	*****	****	*****	*****	****	*****	****	***
	em in	,	,			,		ı	,	ı	ı	ı	ı			1		
₽ F	Lim-Max cmin	J N	Z.	L Z	Ŋ	N	Z	Z Z	Z Z	N N	L N	NL	J N	J Z	Į	ź	N L	J.
2.91	qmax	3.06	3.22	3.31	3.19	3.23	3.09	3.10	3.21	2.99	3.15	3.21						
N.	Lim-Avg qmax	N	, L	¥	J _N	N	N L	L Z	Į.	Z F	N.	¥	Į.	귛	뉟	뒫	귈	귛
2.75	qavg	2.85	2.93	3.00	2.85	2.76	2.75	2.73	2.73	2.69	2.75	2.81			,			
FLOW	Parameter Description qavg	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW 2	FLOW	FLOW	FLOW	FLOW .	FLOW .	FLOW -
9	pram	100	100	100	904	901	00	100	100	100	001	001	004	001	001	001	001	001
103	outfall	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103
10-Jul-14 103	Due Date	10-Aug-14 103	10-Sep-14 103	10-Oct-14 103	10-Nov-14 103	10-Dec-14 103	10-Jan-15 103	10-Feb-15 103	10-Mar-15 103	10-Apr-15 103	10-May-15 103	10-Jun-15 103	10-Jul-15 103	10-Aug-15 103	10-Sep-15 103	10-Oct-15 103	10-Nov-15 103	10-Dec-15 103
VA0004162	Permit No	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162

VA0004162	10-Jan-10 103	103	210	PENTACHLOROPHEN6-	****	1	*****		*****	,	****	<ΩL	NONDETECT	<u></u>
Permit No	Due Date	outfall	pram	Parameter Description qavg	6 m (1) 6 (1) (2) (3)	Lim-Avg qmax	Lim-Max cmin		Lim-Min cavg Lim-Avg cmax	cavg	Lim-Avg	cmax	Lim-Max	
VA0004162	10-Jan-13 103	103	210	PENTACHLOROPHENG-	****		****		****		****	Q Q	ND	
VA0004162	10-Jan-14 103	103	210	PENTACHLOROPHENG-	***		****		*****	,	*****	â	ND	
VA0004162	10-Jan-15 103	103	210	PENTACHLOROPHEN6-	****	1	****	,	****		****	Å	QV QV	
VA0004162	10-Jan-10 103	103	223	CHLOROFORM (AS CH43	3650	43	6100	,	****	υ.	L N	2	귈	-
VA0004162	10-Jan-13 103	103	223	CHLOROFORM (AS CH16.2	2 3650	16.2	6100	1	****	5.55	L Z	5.55	Ŋ.	
VA0004162	10-Jan-14 103	103	223	CHLOROFORM (AS CHO	3650	0	6100	ı	****	<ql< td=""><td>N</td><td>^ΩL</td><td>뒫</td><td></td></ql<>	N	^ΩL	뒫	
VA0004162	10-Jan-15 103	103	223	CHLOROFORM (AS CH181	3650	181	6100	1	****	17.1	Į.	17.1	닐	
VA0004162	10-Jan-10 103	103	306	2,3,7,8-TCDD -	****		****		****	1	****	ŝ	NONDETECT	
VA0004162	10-Jan-13 103	103	306	2,3,7,8-TCDD -	****	1	** ** **		****		****	S D	ND	
VA0004162	10-Jan-14 103	103	306	2,3,7,8-TCDD -	****		****	1	** ** **	,	****	å j	ND	
VA0004162	10-Jan-15 103	103	306	2,3,7,8-TCDD -	****		****		******	1	******	^QL	QN	
VA0004162	10-Jan-10 103	103	307	2,3,7,8-TETRACHLORG-	****		*****		****		****	å	31.9	
VA0004162	10-Jan-13 103	103	307	2,3,7,8-TETRACHLORG-	****		*****		****		*****	^QL	31.9	
VA0004162	10-Jan-14 103	103	307	2,3,7,8-TETRACHLORG-	*****		*****		****	,	****	ģ	31.9	
VA0004162	10-Jan-15 103	103	307	2,3,7,8-TETRACHLORG-	*****		*****	1	****		****	å	31.9	
VA0004162	10-Jan-10 103	103	601	2,4,5-TRICHLOROPHE -	****		****	ı	*****	1	****	ģ	NONDETECT	
VA0004162	10-Jan-13 103	103	601	2,4,5-TRICHLOROPHE	****	ı.	****	ı	*****		*****	ND	ND	

7,400,044,62		5	6		***************************************	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7	-	7			
v A0004 1 0 2	10-3411-114	3	8	4,4,9-1 KIOHLUKUPHE -			•			3		
Permit No	Due Date	outfall	pram	Parameter Description qavg	Lim-Avg qmax	Lim-Max cmin	Lim-Min cavg		Lim-Avg c	стах	Lim-Max	
VA0004162	10-Jan-15 103	103	69	2,4,5-TRICHLOROPHE -	*****	****	****		****	^QL	DN	
VA0004162	10-Jan-10 103	103	602	2,4,6-TRICHLOROPHE -	*****	*****	****		****	ŚQL	NONDETECT	
VA0004162	10-Jan-13 103	103	602	2,4,6-TRICHLOROPHEI-	*****	*****	*****		****	Q	QN	
VA0004162	10-Jan-14 103	103	602	2,4,6-TRICHLOROPHE	****	****	*****		****	4QL	QN	
VA0004162	10-Jan-15 103	133 133	602	2,4,6-TRICHLOROPHE -	****	****	****	* *	****	ΔΩ	ND	
VA0004162	10-Jan-10 103	103	731	4,5,6-TRICHLOROGUA	****	****	****	* *	*****	ΔΩ	NONDETECT	
VA0004162	10-Jan-13 103	103	731	4,5,6-TRICHLOROGUA-	*****	**	****	* *	*****	Q	QN	
VA0004162	10-Jan-14 103	103	731	4,5,6-TRICHLOROGUA-	****	****	****		****	<ql< td=""><td>, QN</td><td></td></ql<>	, QN	
VA0004162	10-Jan-15 103	103	731	4,5,6-TRICHLOROGUA	***	*****	****	*	******	ŚQL	ND	
VA0004162	10-Jan-10 103	103	732	3,4,6-TRICHLOROCATI-	***	*****	****	* *	*****	ζΩ.	NONDETECT	
VA0004162	10-Jan-13 103	103	732	3,4,6-TRICHLOROCATI-	***	**	*****	**	*****	Ð	ND ON	
VA0004162	10-Jan-14 103	103	732	3,4,6-TRICHLOROCATI-	****	*****	*****	**	*****	Ś.	ND OX	
VA0004162	10-Jan-15 103	103	732	3,4,6-TRICHLOROCATI-	****	****	****	*	*****	⟨QL	ND	
VA0004162	10-Jan-10 103	103	733	3,4,5-TRICHLOROCATI-	*****	*****	****	**	****	ŝ	NONDETECT	
VA0004162	10-Jan-13 103	103	733	3,4,5-TRICHLOROCATI-	*****	******	****	*	*****	Q	ND	
VA0004162	10-Jan-14 103	103	733	3,4,5-TRICHLOROCAT	******	*******	****	44 44 F.	****	Ś P	Q Q	
VA0004162	10-Jan-15 103	103	733	3,4,5-TRICHLOROCATI-	*****	*****	****	**	****	ŚQL	ND	

VA0004162	10-Jan-10 103	103	734	3,4,5-TRICHLOROGUA	*****	*****	*****	*****	<ql< th=""><th>NONDETECT</th></ql<>	NONDETECT
		•								
	and and			ratailleter Description davig	CIIII-AVQ qiilax				5 :	riiii-Max
VAUU04162	10-Jan-13 103	3	46/	3,4,5-1 KICHLUKUGUA-	1				2	N N
VA0004162	10-Jan-14 103	103	734	3,4,5-TRICHLOROGUA-	*****	****	****	***	Ϋ́	QN
VA0004162	10-Jan-15 103	103	734	3,4,5-TRICHLOROGUA -	*******	****	****	****	√Q.	ND
VA0004162	10-Jan-10 103	103	735	2,3,4,6-TETRACHLORG-	****	****	****	****	Å	NONDETECT
VA0004162	10-Jan-13 103	103	735	2,3,4,6-TETRACHLORG-	*****	*****	****	****	Q	ND
VA0004162	10-Jan-14 103	103	735	2,3,4,6-TETRACHLORG-	* * * * *	****	*****	*****	å	ΩN
VA0004162	10-Jan-15 103	103	735	2,3,4,6-TETRACHLORG-	1 ** ** ** ** **	****	*****	*****	ś	QN
VA0004162	10-Jan-10 103	103	736	3,4,6-TRICHLOROGUA	****	* * * * * * *	*****	****	å	NONDETECT
VA0004162	10-Jan-13 103	103	736	3,4,6-TRICHLOROGUA	****	****	****	****	Q.	QN
VA0004162	10-Jan-14 103	103	736	3,4,6-TRICHLOROGUA	******	****	****	****	<ql< td=""><td>ND</td></ql<>	ND
VA0004162	10-Jan-15 103	103	736	3,4,6-TRICHLOROGUA-	****	***	****	****	<ql< td=""><td>QN</td></ql<>	QN
VA0004162	10-Jan-10 103	103	747	KAPPA NUMBER MON-	****	******	******	12.3 NL	,	*****
VA0004162	10-Feb-10 103	103	747	KAPPA NUMBER MON-	*****	******	*******	12.5 NL	1	*****
VA0004162	10-Mar-10 103	103	747	KAPPA NUMBER MON-	****	1	******	13.5 NL	t.	****
VA0004162	10-Apr-10 103	103	747	KAPPA NUMBER MON-	****	****	*******	13.1 NL		* * * * * *
VA0004162	10-May-10 103	103	747	KAPPA NUMBER MON-	****	**	*******	11.8 NL		* * * * * *
VA0004162	10-Jun-10 103	103	747	KAPPA NUMBER MON-	****	***	*****	Z Z		* * * * * *

VA0004162	10-Jul-10 103	103	747	KAPPA NUMBER MON-	* ********	*****	**	<u> </u>	N.	1	******	
Permit No	Due Date	outfall	<u>pram</u>	Parameter Description gavg	l Lim-Avg qmax	Lim-Max cmin	ı Lim-Min	cavg	Lim-Avg cmax	cmax	Lim-Max	
VA0004162	10-Aug-10 103	103	747	KAPPA NUMBER MON-		***	****	,	N		***	
VA0004162	10-Sep-10 103	103	747	KAPPA NUMBER MON-	*****	***	****		NL		****	
VA0004162	10-Oct-10 103	103	747	KAPPA NUMBER MON-	****	****	***		N	,	****	
VA0004162	10-Nov-10 103	103	747	KAPPA NUMBER MON-	******	****	****		Ŋ.		*****	
VA0004162	10-Dec-10 103	103	747	KAPPA NUMBER MON-	****	****	****		J N		****	
VA0004162	10-Sep-12 103	103	747	KAPPA NUMBER MON-	* * * * * * *	***	*****	10.5	Ę	1	****	
VA0004162	10-Oct-12 103	103	747	KAPPA NUMBER MON-	***	***	****	7.49	٦	1	*****	
VA0004162	10-Nov-12 103	103	747	KAPPA NUMBER MON-	***	**	****	7.4	J Z	1	******	
VA0004162	10-Dec-12 103	103	747	KAPPA NUMBER MON-	****	****	*****	8.6	J N		*****	
VA0004162	10-Jan-13 103	103	747	KAPPA NUMBER MON-	* * * * * * * * * * * * * * * * * * * *	******	*****	9.4	J.	ı	*****	
VA0004162	10-Feb-13 103	103	747	KAPPA NUMBER MON-	* * * * * * *	****	****	7.7	J Z	ı	****	
VA0004162	10-Mar-13 103	103	747	KAPPA NUMBER MON-	****	****	****	9.2	Z		****	
VA0004162	10-Apr-13 103	103	747	KAPPA NUMBER MON-	***	**	****	7.44	N N		****	
VA0004162	10-May-13 103	103	747	KAPPA NUMBER MON-	****	****	*****	10.7	٦	•	*****	
VA0004162	10-Jun-13 103	103	747	KAPPA NUMBER MON-	***	****	****	11.0	닐	ı	****	
VA0004162	10-Jul-13 103	103	747	KAPPA NUMBER MON-	***	****	****	12.2	٦Ľ		****	
VA0004162	10-Aug-13 103	103	747	KAPPA NUMBER MON-	***	****	****	12.78 NL	Ę		****	

VA0004162	10-Sep-13 103	103	747	KAPPA NUMBER MON-	*****	*****	****	12.37	N	,	*****	
VA0004162	10-Oct-13 103	103	747	KAPPA NUMBER MON-	*****	****	****	11.5	Į Z		***	
VA0004162	10-Nov-13 103	103	747	KAPPA NUMBER MON-	****	****	****	11.2	NL	,	*****	
VA0004162	10-Dec-13 103	103	747	KAPPA NUMBER MON-	*****	****	****	10.9	N.		****	
VA0004162	10-Jan-14 103	103	747	KAPPA NUMBER MON-	****	*	****	10.14	¥		****	
VA0004162	10-Feb-14 103	103	747	KAPPA NUMBER MON-	****	* * * * * * * * * * * * * * * * * * * *	****	9.87	N	1	***	
VA0004162	10-Mar-14 103	1 03	747	KAPPA NUMBER MON-	****	***	****	9.6	닐	1	****	
VA0004162	10-Apr-14 103	103	747	KAPPA NUMBER MON-	****	1 * * * * * * *	****	9.7	J N		*****	
VA0004162	10-May-14 103	103	747	KAPPA NUMBER MON-	1 ** ** ** **	****	***	9.98	뉟	ı	****	
VA0004162	10-Jun-14 103	103	747	KAPPA NUMBER MON-	****	****	****	8.8	Z	1	****	
VA0004162	10-Jul-14 103	103	747	KAPPA NUMBER MON-	* * * *	****	****	9.8	륃	1	****	
VA0004162	10-Aug-14 103	103	747	KAPPA NUMBER MON-	*****	******	*****	9.7	N	1	*****	-
VA0004162	10-Sep-14 103	103	747	KAPPA NUMBER MON-	****	*****	****	9.8	ź	1	****	
VA0004162	10-Oct-14 103	103	747	KAPPA NUMBER MON-	**	****	*****	9.6	Z		***	
VA0004162	10-Nov-14 103	103	747	KAPPA NUMBER MON-	******	****	****	8.8	Ľ Z	,	*****	
VA0004162	10-Dec-14 103	103	747	KAPPA NUMBER MON-	******	*****	****	9.6	Z Z	ı	****	
VA0004162	10-Jan-15 103	103	747	KAPPA NUMBER MON-	*****	******	****	9.6	뉟		****	
VA0004162	10-Feb-15 103	103	747	KAPPA NUMBER MON-	****	****	****	9.6	ź		*****	
VA0004162	10-Mar-15 103	103	747	KAPPA NUMBER MON-	*****	******	****	10.01 NL	Į.	1	****	

VA0004162	10-Apr-15 103	103	747	KAPPA NUMBER MON-	******	*****	****	9.6	N N	1	*****
							1000				•
Permit No	Due Date	outfall	bram	Parameter Description qavg	Lim-Avg qmax	Lim-Max cmin	Lim-Min	cavg	Lim-Avg	сшах	Lim-Max
VA0004162	10-May-15 103	103	747	KAPPA NUMBER MON-	****	****	****	9.6	Z Z		****
VA0004162	10-Jun-15 103	103	747	KAPPA NUMBER MON-	******	****	****	9.2	Ŋ.	ı	*****
VA0004162	10-Jul-15 103	103	747	KAPPA NUMBER MON-	******	*****	****		Į,	ı	*****
VA0004162	10-Aug-15 103	103	747	KAPPA NUMBER MON-	* * * * * * * * * * * * * * * * * * * *	*****	****		J _Z	•	*****
VA0004162	10-Sep-15 103	103	747	KAPPA NUMBER MON-	* * * * * * * * * * * * * * * * * * * *	******	****	,	Ę		****
VA0004162	10-Oct-15 103	103	747	KAPPA NUMBER MON-	* * * * * * * * * * * * * * * * * * * *	**	****	1	J _R	1	*****
VA0004162	10-Nov-15 103	103	747	KAPPA NUMBER MON-	* * * * * * * * * * * * * * * * * * * *	****	****	ı	Į.	ı	*****
VA0004162	10-Dec-15 103	103	747	KAPPA NUMBER MON-	****	*****	****	1	N L	1	****
VA0004162	10-Jan-10 103	103	749	KAPPA NUMBER ANNI-	***	****	****	12.7	20	ı	****
VA0004162	10-Feb-10 103	103	749	KAPPA NUMBER ANNI-	*****	****	*****	12.7	20	1	****
VA0004162	10-Mar-10 103	103	749	KAPPA NUMBER ANNI-	****	**	****	12.7	20	ŧ	****
VA0004162	10-Apr-10 103	103	749	KAPPA NUMBER ANN	* * * * *	****	*****	12.5	20	1	****
VA0004162	10-May-10 103	103	749	KAPPA NUMBER ANN	****	*****	***	12.4	20	1	****
VA0004162	10-Jun-10 103	103	749	KAPPA NUMBER ANN	* * * * * * * * * * * * * * * * * * * *	****	*****		20	,	****
VA0004162	10-Jul-10 103	5	749	KAPPA NUMBER ANNI-	* * * * * * * * * * * * * * * * * * * *	* * * * * *	****		20		****
VA0004162	10-Aug-10 103	103	749	KAPPA NUMBER ANNI-	* * * * * * * * * * * * * * * * * * * *	****	******	ı	20	ı	*****
VA0004162	10-Sep-10 103	103	749	KAPPA NUMBER ANN	* * * * * * * * * * * * * * * * * * * *	****	******		20		*****

П	T	Т	T		T													
									******			,						
Lim-Max	*****	*****	****	****	*****	*****	*****	****	*****	****	****	****	****	****	****	****	*****	*****
cmax	,	,	,	,		ı	1	į.	•	,		ı	1	ı	ı	ı	,	
Lim-Avg cmax	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
cavg	,	,	,	N. R.	R.	NR	NR	N. R.	R R	R R	NR	NR	N R	R R	NR.	9.96	10.2	10.5
Lim-Min cavg	****	***	****	****	****	****	****	****	****	****	****	****	***	*****	****	*****	****	****
cmin		ı		•	Ī	ı					ı		ı		•	ŧ	ı	1
Lim-Max cmin	*****	****	****	****	****	****	*****	****	****	****	****	******	****	*****	****	****	*****	****
qmax		,				1	ı		1	F	1	1	ı			1	1	ı
Lim-Avg qmax	****	****	*****	****	****	*****	*****	****	****	*****	****	*****	*****	****	*****	*****	****	****
qavg	1					ı	,	1				1	2			1	1	
Parameter Description qavg	KAPPA NUMBER ANN -	KAPPA NUMBER ANNI-	KAPPA NUMBER ANN															
pram	749	749	749	749	749	749	749	749	749	749	749	749	749	749	749	749	749	749
outfall	103	103	103	103	103	103	133	103	103	103	103	103	103	103	103	103	103	103
Due Date	10-Oct-10 103	10-Nov-10 103	10-Dec-10 103	10-Sep-12 103	10-Oct-12 103	10-Nov-12 103	10-Dec-12 103	10-Jan-13 103	10-Feb-13 103	10-Mar-13 103	10-Apr-13 103	10-May-13 103	10-Jun-13 103	10-Jul-13 103	10-Aug-13 103	10-Sep-13 103	10-Oct-13 103	10-Nov-13 103
Permit No	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162									

	T		Ī		I													
												·						1
Lim-Max	*****	* * * * * * * * * * * * * * * * * * * *	****	****	****	****	****	*****	****	*****	****	*****	****	*****	****	****	*****	****
стах	ī		1	. 1		1		,	1	1		1	,			•	1	
Lim-Avg cmax	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
cavg	10.68	10.73	10.92	11.0	11.0	10.97	10.8	10.6	10.3	10.1	10.0	9.8	9.8	9.7	9.7	9.73	9.7	9.7
Lim-Min cavg	****	****	****	****	****	****	*****	*****	****	****	*****	*****	****	****	****	****	*****	****
omin	ı	1								1	ŝ		ı	-	,		,	
Lim-Max cmin	****	***	****	****	****	*****	****	*****	*****	****	*****	*****	******	****	*****	*****	****	*****
V. 1441466	ŧ	1		ı			1	3		1	1	-	1	1	ı	1	1	
Lim-Avg qmax	*****	****	*****	****	****	****	****	*****	*****	****	****	******	****	*****	*****	****	****	****
qavg											ı							
Parameter Description qavg	KAPPA NUMBER ANN	KAPPA NUMBER ANN	KAPPA NUMBER ANN	KAPPA NUMBER ANN	KAPPA NUMBER ANN	KAPPA NUMBER ANN	KAPPA NUMBER ANN	KAPPA NUMBER ANN	KAPPA NUMBER ANN	KAPPA NUMBER ANN	KAPPA NUMBER ANN	KAPPA NUMBER ANNI-	KAPPA NUMBER ANN					
pram	749	749	749	749	749	749	749	749	749	749	749	749	749	749	749	749	749	749
outfall	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103
Due Date	10-Dec-13 103	10-Jan-14 103	10-Feb-14 103	10-Mar-14 103	10-Apr-14 103	10-May-14 103	10-Jun-14 103	10-Jul-14 103	10-Aug-14 103	10-Sep-14 103	10-Oct-14 103	10-Nov-14 103	10-Dec-14 103	10-Jan-15 103	10-Feb-15 103	10-Mar-15 103	10-Apr-15 103	10-May-15 103
Permit No	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162

Т	—Т		Т				
Lim-Avg qmax Lim-Max cmin Lim-Min cavg Lim-Avg cmax Lim-Max	****	****	****	****	****	****	****
стах			,				
Lim-Avg	20	20	20	20	20	20	20
cavg	9.7						-
n-Min	******	*******	****	****	****	****	******
<u> </u>	*	*	*	*	*	* *	**
ax	*	*				*	*
Lim-M	***	*****	****	*****	****	****	******
dmax	,	A.					
n-Avg	******	******	*****	****	*****	***	******
	*	*	*	-	*	*	**
on day	- ż	ż	ż	- Z	ż	Ž,	ż
Parameter Description gavg	KAPPA NÚMBER ANN	KAPPA NUMBER ANN	A NUMBER ANN	KAPPA NUMBER ANN	KAPPA NUMBER ANN	KAPPA NUMBER ANN	KAPPA NUMBER ANN
eter De	A NUME	A NUM	A NUME	A NUME	A NUME	A NUME	A NUME
Param	KAPP,	КАРР,	KAPP,	KAPP,	KAPP,	КАРР,	КАРР,
pram	749	749	749	749	749	749	749
outfall							
	10-Jun-15 103	10-Jul-15 103	10-Aug-15 103	10-Sep-15 103	10-Oct-15 103	10-Nov-15 103	10-Dec-15 103
Due Date	10~Ju	10-71	10-Au	10-Se	10-O	10-No	10-De
\$14.100 VA	1162	1162	1162	1162	1162	1162	1162
Permit No	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162	VA0004162